126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Complimentary effect of exogenous enzymes, essential amino acids and essential fatty acids supplemented de-oiled rice bran (DORB) based diets on hematology, liver and intestinal histoarchitecture in Labeo rohita

ORCID Icon, , , &

References

  • Kumar S, Sahu NP, Gupta S, Deo AD, Shamna N, Ranjan A. Inclusion level of deoiled rice bran (DORB) in the diet of Labeo rohita (Hamilton, 1882) fingerlings: effect on growth and gene expression of IGF-I and IGF-II. Aquaculture. 2017;481:211–217.
  • Ranjan A, Sahu NP, Deo AD, Kumar HS, Kumar S, Jain KK. Xylanase and phytase supplementation in the de-oiled rice bran (DORB) based diet improves the growth performance of Labeo rohita. Int J Curr Microbiol App Sci. 2017;6(6):1493–1503.
  • Ramakrishna R, Shipton TA, Hasan MR. Feeding and feed management of Indian major carps in Andhra Pradesh India. Food and Agriculture Organization of the United Nations. Technical Paper No. 578; 2013. p. 90
  • Kumar S, Sahu NP, Shamna N, Ranjan A. Feeding higher level of de-oiled rice bran causes stress to Labeo rohita fingerlings. Aquaculture. 2018;484:184–190.
  • Annison G, Moughan P, Thomas D. Nutritive activity of soluble rice bran arabinoxylans in broiler diets. Br Poult Sci. 1995;36(3):479–488.
  • Marimuthu V, Sarawagi AD, Kumar A, et al. Glimpse of feed and feed additive necessity and mycotoxin challenges in aquaculture. In: Aquaculture Science and Engineering. Singapore: Springer; 2022:401–430.
  • Ranjan A, Sahu NP, Deo AD, Kumar S. Comparative growth performance, in vivo digestibility and enzyme activities of Labeo rohita fed with DORB based formulated diet and commercial carp feed. Turk J Fish Aquat Sci. 2018;18(9):1025–1036.
  • Ranjan A, Sahu NP, Deo AD, Kumar HS, Kumar S, Jain KK. Comparative evaluation of fermented and nonfermented de-oiled rice bran with or without exogenous enzymes supplementation in the diet of Labeo rohita (Hamilton, 1822). Fish Physiol Biochem. 2018;44(4):1037–1049.
  • Ranjan A, Sahu NP, Deo AD, Kumar S. Solid state fermentation of de-oiled rice bran: effect on in vitro protein digestibility, fatty acid profile and anti-nutritional factors. Food Res Int. 2019;119:1–5.
  • Ranjan A, Kumar S, Sahu NP, Jain KK, Deo AD. Exogenous phytase and xylanase supplementation of formulated diets for rohu (Labeo rohita): impact on haematology, histology and IGF I gene expression. Fish Physiol Biochem. 2021;47(1):49–58.
  • Zheng CC, Wu JW, Jin ZH, et al. Exogenous enzymes as functional additives in finfish aquaculture. Aquacult Nutr. 2020;26(2):213–224.
  • Yao W, Li X, Chowdhury MK, Wang J, Leng X. Dietary protease, carbohydrase and micro-encapsulated organic acid salts individually or in combination improved growth, feed utilization and intestinal histology of Pacific white shrimp. Aquaculture. 2019;503:88–95.
  • Ranjan A, Kumar S, Sahu NP, Jain KK, Deo AD. Strategies for maximizing utilization of de-oiled rice bran (DORB) in the fish feed. Aquaculture International. 2022;30(1):99–114.
  • Buchanan J, Sarac H, Poppi D, Cowan R. Effects of enzyme addition to canola meal in prawn diets. Aquaculture. 1997;151:29–35.
  • Kumar S, Sahu NP, Pal AK, Choudhury D, Mukherjee S. Studies on digestibility and digestive enzyme activities in Labeo rohita (Hamilton) juveniles: effect of microbial α-amylase supplementation in non-gelatinized or gelatinized corn-based diet at two protein levels. Fish Physiol Biochem. 2006;32:209–220.
  • Li X, Rezaei R, Li P, Wu G. Composition of amino acids in feed ingredients for animal diets. Amino Acids. 2011;40(4):1159–1168.
  • Day L, Cakebread JA, Loveday SM. Food proteins from animals and plants: differences in the nutritional and functional properties. Trends Food Sci Technol. 2022;119:428–442.
  • Li J, Li J, Wu T. Effects of non‐starch polysaccharides enzyme, phytase and citric acid on activities of endogenous digestive enzymes of tilapia (Oreochromis niloticus× Oreochromis aureus). Aquac Nutr. 2009;15:415–420.
  • Espe M, Lemme A, Petri A, El-Mowafi A. Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture. 2006;255:255–262.
  • Li P, Mai K, Trushenski J, Wu G. New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids. 2009;37(1):43–53.
  • Mai K, Zhang L, Ai Q, et al. Dietary lysine requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture. 2006;258:535–542.
  • Gatlin DM, Barrows FT, Brown P, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res. 2007;38:551–579.
  • Sardar P, Abid M, Randhawa H, Prabhakar S. Effect of dietary lysine and methionine supplementation on growth, nutrient utilization, carcass compositions and haemato‐biochemical status in Indian Major Carp. Rohu (Labeo rohita H.) fed soy protein‐based diet. Aquac. Nutr. 2009;15:339–346.
  • Mukhopadhyay N, Ray A. Improvement of quality of sal (Shorea robusta) seed meal protein with supplemental amino acids in feeds for rohu, Labeo rohita (Hamilton), fingerlings. Acta Ichthyologica et Piscatoria. 1999;29:25–39.
  • Mukhopadhyay N. Improvement of quality of copra (dried kernel of Cocos nucifera) seed meal protein with supplemental amino acids in feeds for rohu, Labeo rohita (Hamilton) fingerlings. Acta Ichthyologica et Piscatoria. 2000;30:21–34.
  • Figueiredo‐Silva C, Lemme A, Sangsue D, Kiriratnikom S. Effect of DL‐methionine supplementation on the success of almost total replacement of fish meal with soybean meal in diets for hybrid tilapia (Oreochromis niloticus× Oreochromis mossambicus). Aquac Nutr. 2015;21:234–241.
  • Sargent J, Bell J, Bell M, Henderson R, Tocher D. Requirement criteria for essential fatty acids. J Appl. Ichthyo. 1995;11:183–198.
  • Sargent J, Bell G, McEvoy L, Tocher D, Estevez A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture. 1999;177:191–199.
  • Misra S, Sahu NP, Pal AK, Xavier B, Kumar S, Mukherjee S. Preand post-challenge immuno-haematological changes in Labeo rohita juveniles fed gelatinised or non-gelatinised carbohydrate with n-3 PUFA. Fish Shellfish Immunol. 2006;21(4):346–356.
  • Monroig Ó, Navarro JC, Tocher DR. Long-Chain Polyunsaturated Fatty Acids in Fish: Recent Advances on Desaturases and Elongases Involved in Their Biosynthesis. Avances en Nutrición Acuícola; Universidad Autónoma de Nuevo León, Monterrey, México, 2011. pp. 257–283.
  • Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 2015;449:94–107.
  • Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients. 2019;11(1):89.
  • AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of the Association Official Analytical Chemists, 16th edn. Arlington: AOAC, Inc.; 1995.
  • Halver JE. Formulating practical diets for fish. Journal of the Fisheries Board of Canada. 1976;33(4):1032–1039.
  • APHA.Standard Methods for the Examination of Water and Wastewater. 20th Edition. Washigton DC: APHA; 1998:1220.
  • Reinhold J. 1953. Manual Determination of Serum Total Protein, Albumin and Globulin Fraction by Biuret Method. Standard Methods in Clinical Chemistry. New York: Academic Press; p. 88.
  • Wiegertjes GF, Stet RM, Parmentier HK, van Muiswinkel WB. Immunogenetics of disease resistance in fish: a comparative approach. Dev Comp Immunol. 1996;20(6):365–381.
  • Jha AK, Pal AK, Sahu NP, Kumar S, Mukherjee S. Haematoimmunological responses to dietary yeast RNA, ω-3 fatty acid and β-carotene in Catla catla juveniles. Fish Shellfish Immunol. 2007;23(5):917–927.
  • Srivastava PK, Pandey AK. Role of immunostimulants in immune responses of fish and shellfish. Biochem Cell Arch. 2015;15(1):47–73.
  • Pavlidis M, Futter WC, Kathario P, Divanach P. Blood cells of six Mediterranean mariculture fih species. J Appl Ichthyol. 2007;23:70–73.
  • Fazio F, Marafioti S, Torre A, Sanfilippo M, Panzera M, Faggio C. Haematological and serum protein profiles of Mugil cephalus: effect of two different habitat. Ichthyol Res. 2013;60:36–42.
  • Jahanbakhshi A, Imanpoor MR, Taghizadeh V, Shabani A. Hematological and serum biochemical indices changes induced by replacing fish meal with plant protein (sesame oil cake and corn gluten) in the Great sturgeon (Huso huso). Comp Clin Pathol. 2013;22:1087–1092.
  • Azaza MS, Saidi SA, Dhraief MN, El-Feki A. Growth performance, nutrient digestibility, hematological parameters, and hepatic oxidative stress response in juvenile Nile tilapia, Oreochromis niloticus, fed carbohydrates of different complexities. Animals. 2020;10(10):1913.
  • Klinger RC, Blazer VS, Echevarria C. Effects of dietary lipid on the hematology of channel catfish, Ictalurus punctatus. Aquaculture. 1996;147:225–233.
  • ShuennDer Y, TainSheng L, ChyngHwa L, YewHu C, Hung-Kuang P, Chiu L. Partial substitution of white fish meal with soybean meal or lupin meal in diets for fingerling black carp (Mylopharyngodon piceus). J Fish Soc Taiwan. 2001;28:317–328.
  • Wedemeyer GA, McLeay DJ. Methods for determining the tolerance of fishes to environmental stressors. In: Pickering, AD, Stress and Fish. Cambridge: Academic Press; 1981:247–268.
  • Ivanc A, Hasković E, Jeremić S, Dekić R. Hematological evaluation of welfare and health of fish. Praxis Veterinaria. 2005;53(3):191–202.
  • Lataretu A, Furnaris F, Mitranescu E. Hematologic profile as stress indicator in fish. Scientific works series C. Vet Med. 2013;59(1):102–104.
  • Kumar S, Sahu NP, Pal AK, Choudhury D, Yengkokpam S, Mukherjee S. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol. 2005;19(4):331–344.
  • Brusle J, Anadon GG.. The structure and function of fish liver. In: Fish Morphology. Milton Park: Routledge; 2017:77–93.
  • Hinton DE, Baumann PC, Gardner GR, et al. Histopathologic biomarkers. In: Biomarkers. Boca Raton: CRC Press; 2018:155–210.
  • Rašković B, Stanković M, Marković Z, Poleksić V. Histological methods in the assessment of different feed effects on liver and intestine of fish. J Agric Sci. 2011;56(1):87–100.
  • Gai F, Gasco L, Daprà F, Palmegiano GB, Sicuro B. Enzymatic and histological evaluations of gut and liver in rainbow trout, Oncorhynchus mykiss, fed with rice protein concentrate‐based diets. J World Aquacult Soc. 2012;43(2):218–229.
  • Rhodes LD, Johnson RB, Myers MS. Effects of alternative plant-based feeds on hepatic and gastrointestinal histology and the gastrointestinal microbiome of sablefish (Anoplopoma fimbria). Aquaculture. 2016;464:683–691.
  • El-Araby DA, Amer SA, Khalil AA. Effect of different feeding regimes on the growth performance, antioxidant activity, and health of Nile tilapia, Oreochromis niloticus. Aquaculture. 2020;528:735572.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.