209
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

MiR-21 regulated hair follicle cycle development in Cashmere goats by targeting FGF18 and SMAD7

, , , , , & ORCID Icon show all

References

  • Choi BY. Hair-growth potential of ginseng and its major metabolites: a review on its molecular mechanisms. Int J Mol Sci. 2018;19(9):2703.
  • Maxfield L, Cook C. Loose Anagen Syndrome. Treasure Island (FL): StatPearls; 2022.
  • Choi S, Zhang B, Ma S, et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature. 2021;592(7854):428–432.
  • Jin M, Cao M, Cao Q, Piao J, Zhao F, Piao JA. Long noncoding RNA and gene expression analysis of melatonin-exposed Liaoning Cashmere goat fibroblasts indicating Cashmere growth. Naturwissenschaften. 2018;105(9-10):60.
  • Liu Y, Wang L, Li X, et al. High-throughput sequencing of hair follicle development-related micrornas in Cashmere goat at various fetal periods. Saudi J Biol Sci. 2018;25(7):1494–1508.
  • Hochfeld LM, Anhalt T, Reinbold CS, et al. Expression profiling and bioinformatic analyses suggest new target genes and pathways for human hair follicle related microRNAs. BMC Dermatol. 2017;17(1):3.
  • Zhao B, Chen Y, Yang N, et al. miR-218-5p regulates skin and hair follicle development through Wnt/beta-catenin signaling pathway by targeting SFRP2. J Cell Physiol. 2019;234(11):20329–20341.
  • Feng Y, Wang J, Ma J, et al. miR-31-5p promotes proliferation and inhibits apoptosis of goat hair follicle stem cells by targeting RASA1/MAP3K1 pathway. Exp Cell Res. 2021;398(2):112441.
  • Ma T, Li J, Li J, et al. Expression of miRNA-203 and its target gene in hair follicle cycle development of Cashmere goat. Cell Cycle. 2021;20(2):204–210.
  • Gonzalez H, Lema C, Kirken RA, et al. Arsenic-exposed keratinocytes exhibit differential microRNAs expression profile; potential implication of miR-21, miR-200a and miR-141 in melanoma pathway. Clin Cancer Drugs. 2015;2(2):138–147.
  • Li J, Qu H, Jiang H, et al. Transcriptome-wide comparative analysis of microRNA profiles in the telogen skins of Liaoning Cashmere Goats (Capra hircus) and Fine-Wool Sheep (Ovis aries) by Solexa Deep Sequencing. DNA Cell Biol. 2016;35(11):696–705.
  • Zhai B, Zhang L, Wang C, et al. Identification of microRNA-21 target genes associated with hair follicle development in sheep. PeerJ. 2019;7:e7167.
  • Ma Y-H, Deng W-J, Luo Z-Y, et al. Inhibition of microRNA-29b suppresses oxidative stress and reduces apoptosis in ischemic stroke. Neural Regen Res. 2022;17(2):433–439.
  • Li W, Wang S-S, Shan B-Q, et al. miR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation. Neural Regen Res. 2022;17(2):401–408.
  • Ma S, Zhang A, Li X, et al. MiR-21-5p regulates extracellular matrix degradation and angiogenesis in TMJOA by targeting Spry1. Arthritis Res Ther. 2020;22(1):99.
  • Zhang L, Yu L, Liu Y, et al. miR-21-5p promotes cell proliferation by targeting BCL11B in Thp-1 cells. Oncol Lett. 2021;21(2):119.
  • Li G, Yang Y, Xu S, et al. mir-21-5p inhibits the progression of human chondrosarcoma by regulating CCR7/STAT3/NF-kappaB pathway. Connect Tissue Res. 2021;62(3):313–324.
  • Yang Y, Wei X, Bai J, et al. MicroRNA-340 is involved in ultraviolet B-induced pigmentation by regulating the MITF/TYRP1 axis. J Int Med Res. 2020;48(11):300060520971510.
  • Ji K, Zhang P, Zhang J, et al. MicroRNA 143-5p regulates alpaca melanocyte migration, proliferation and melanogenesis. Exp Dermatol. 2018;27(2):166–171.
  • Liu G, Li S, Liu H, et al. The functions of ocu-miR-205 in regulating hair follicle development in Rex rabbits. BMC Dev Biol. 2020;20(1):8.
  • Wu Z, et al. Chi-miR-130b-3p regulates Inner Mongolia Cashmere goat skin hair follicles in fetuses by targeting Wnt family member 10A. G3. 2021;11(1).
  • Hai E, et al. Chi-miR-370-3p regulates hair follicle morphogenesis of Inner Mongolian Cashmere goats. G3. 2021;11(5):91.
  • Huang W-Y, Huang Y-C, Huang K-S, et al. Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction. J Dermatol Sci. 2017;86(2):114–122.
  • Houschyar KS, Borrelli MR, Tapking C, et al. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms. Dermatology. 2020;236(4):271–280.
  • Wang S, Li F, Liu J, et al. Integrative analysis of methylome and transcriptome reveals the regulatory mechanisms of hair follicle morphogenesis in Cashmere Goat. Cells. 2020;9(4):969.
  • Imamura T. Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application. Biol Pharm Bull. 2014;37(7):1081–1089.
  • Kimura-Ueki M, Oda Y, Oki J, et al. Hair cycle resting phase is regulated by cyclic epithelial FGF18 signaling. J Invest Dermatol. 2012;132(5):1338–1345.
  • Li S, Chen J, Chen F, et al. Liposomal honokiol promotes hair growth via activating Wnt3a/beta-catenin signaling pathway and down regulating TGF-beta1 in C57BL/6N mice. Biomed Pharmacother. 2021;141:111793.
  • Han G, Li AG, Liang Y-Y, et al. Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev Cell. 2006;11(3):301–312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.