337
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

OMICs approaches and technologies for understanding low-high feed efficiency traits in chicken: implication to breeding

ORCID Icon & ORCID Icon

References

  • Hume DA, Whitelaw CBA, Archibald AL. The future of animal production: improving productivity and sustainability. J Agric Sci. 2011;149(S1):9–16.
  • Saxena VK, Kolluri G. Selection methods in poultry breeding: from genetics to genomics. In: Liu X. Rijeka, ed. Application of Genetics and Genomics in Poultry Science, edited volume. Crotia: IntechOpen, 2018.
  • Calus MPL. Genomic breeding value prediction: methods and procedures. Animal. 2010;4(2):157–164.
  • Fulton JE. Genomic selection for poultry breeding. Anim Front. 2012;2(1):30–36.
  • Hess CW, Byerly TC, Jull MA. The efficiency of feed utilization by barred plymouth rock and crossbred broilers. Poult Sci. 1941;20(3):210–216.
  • Li H, Deeb N, Zhou H, Ashwell CM, Lamont SJ. Chicken quantitative trait loci for growth and body composition associated with the very low density apolipoprotein-II gene. Poult Sci. 2005;84(5):697–703.
  • Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819–1829.
  • VanRaden PM. Symposium review: how to implement genomic selection. J Dairy Sci. 2020;103(6):5291–5301.
  • Verdal HD, Narcy A, Bastianelli D, et al. Improving the efficiency of feed utilization in poultry by selection. 2. Genetic parameters of excretion traits and correlations with anatomy of the gastro-intestinal tract and digestive efficiency. BMC Genet. 2011;12:71–80.
  • Bottje W, Kong B-W. Cell biology symposium: feed efficiency: mitochondrial function to global gene expression 1, 2. J Anim Sci. 2013;91:1582–1593.
  • Bottje WG, Carstens GE. Association of mitochondrial function and feed efficiency in poultry and livestock species 1. J Anim Sci. 2014;87:48–63.
  • Donohue M, Cunningham DL. Effects of grain and oilseed prices on the costs of US poultry production. J Appl Poult Res. 2009;18(2):325–337.
  • Zampiga M, Flees J, Meluzzi A, Dridi S, Sirri F. Application of omics technologies for a deeper insight into quali-quantitative production traits in broiler chickens : a review. J Anim Sci Biotechnol. 2018;9(61):1–18.
  • Bottje WG, Lassiter K, Piekarski-Welsher A, et al. Proteogenomics reveals enriched ribosome assembly and protein translation in pectoralis major of high feed efficiency pedigree broiler males. Front Physiol. 2017;8(May):1–11.
  • Mignon‑Grasteau S, Rideau N, Gabriel I, et al. Detection of QTL controlling feed efficiency and excretion in chickens fed a wheat ‑ based diet. Genet Sel Evol. 2015;47(74):74–13.
  • Mignon-Grasteau S, Muley N, Bastianelli D, et al. Heritability of digestibilities and divergent selection for digestion ability in growing chicks fed a wheat diet. Poult Sci. 2004;83(6):860–867.
  • Sell-Kubiak E, Wimmers K, Reyer H, Szwaczkowski T. Genetic aspects of feed efficiency and reduction of environmental footprint in broilers : a review. J Appl Genet. 2017;58:487–498.
  • Shah TM, Patel NV, Patel AB, Upadhyay MR. A genome ‑ wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio. Mol Genet Genom. 2016;291(4):1715–1725.
  • Arthur PF, Archer JA, Herd RM. Feed intake and efficiency in beef cattle: overview of recent Australian research and challenges for the future. Aust J Exp Agric. 2004;44(4–5):361–369.
  • Willems OW, Miller SP, Wood BJ. Aspects of selection for feed efficiency in meat producing poultry. World Poult Sci J. 2013;69(1):77–88.
  • Kaur S, Trobe L, Park D. Genomics. In: Stanley M, Kelly H, eds. Brenner's Encyclopedia of Genetics. 2nd ed., Vol. 3. San Diego, California, USA: Elsevier Inc; 2013:310–312.
  • Marchesi Augusto J, Petroli, Ono RK, Cantão ME, et al. Exploring the genetic architecture of feed efficiency traits in chickens. Sci Rep. 2021;11(0123456789):1–12.
  • Mebratie W, Reyer H, Wimmers K, Bovenhuis H, Jensen J. Genome wide association study of body weight and feed efficiency traits in a commercial broiler chicken population, a re-visitation. Sci Rep. 2019;9(1):1–10.
  • Mignon-Grasteau S, Narcy A, Rideau N, et al. Impact of selection for digestive efficiency on microbiota composition in the chicken. PLoS One. 2015;10(8):1–18.
  • Reyer H, Hawken R, Murani E, Ponsuksili S, Wimmers K. The genetics of feed conversion efficiency traits in a commercial broiler line. Sci Rep. 2015;5:16387–16311.
  • Romé H, Varenne A, Hérault F, et al. GWAS analyses reveal QTL in egg layers that differ in response to diet differences. Genet Sel Evol. 2015;47(1):1–11.
  • Wolc A, Arango J, Jankowski T, et al. Genome-wide association study for egg production and quality in layer chickens. J Anim Breed Genet. 2014;131(3):173–182.
  • Wolc A, Drobik-Czwarno W, Jankowski T, et al. Accuracy of genomic prediction of shell quality in a White Leghorn line. Poult Sci. 2020;99(6):2833–2840.
  • Sun Y, Zhao G, Liu R, et al. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics. 2013;14(1):458–468.
  • Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):1–23.
  • Bottje WG, Kong B, Song JJ, et al. Molecular, cellular, and developmental biology gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K microarray. II. Differentially expressed focus genes. Poult Sci. 2012;91:2576–2587.
  • Lee SH, Gupta MK, Ho YT, Kim T, Lee HT. Transgenic chickens expressing human urokinase-type plasminogen activator. Poult Sci. 2013;92(9):2396–2403.
  • Xiao C, Deng J, Zeng L, et al. Transcriptome analysis identifies candidate genes and signaling pathways associated with feed efficiency in Xiayan chicken. Front Genet. 2021;12(March):1–12.
  • Yi G, Yuan J, Bi H, Yan W, Yang N, Qu L. In-depth duodenal transcriptome survey in chickens with divergent feed efficiency using RNA-seq. PLoS One. 2015;10(9):10.
  • Zhou N, Lee WR, Abasht B. Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens’ feed efficiency. BMC Genom. 2015;16(195).
  • Liebler DC. Introduction to Proteomics: Tools for the New Biology. Totowa, New Jersey: Humana Press Inc.; 2002.
  • Soares R, Franco C, Pires E, et al. Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. J Proteomics. 2012;75(14):4190–4206.
  • Bottje W, Tang ZX, Iqbal M, et al. Association of mitochondrial function with feed efficiency within a single genetic line of male broilers. Poult Sci. 2002;81(4):546–555.
  • Iqbal M, Pumford NR, Tang ZX, et al. Low feed efficient broilers within a single genetic line exhibit higher oxidative stress and protein expression in breast muscle with lower mitochondrial complex activity. Poult Sci. 2004;83(3):474–484.
  • Kong B, Lassiter K, Piekarski-Welsher A, Dridi S. Proteomics of breast muscle tissue associated with the phenotypic expression of feed efficiency within a pedigree male broiler line : I. Highlight on mitochondria. PLoS One. 2016:11(5):1–29.
  • Zanetti E, Molette C, Chambon C, Pinguet J, Cassandro M. Using 2-DE for the differentiation of local chicken breeds. Proteomics. 2011;11:2613–2619.
  • Zheng A, Luo J, Meng K, et al. Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium. BMC Genom. 2015;15:1167–1182.
  • Bottje W, Brand MD, Ojano-Dirain C, Lassiter K, Toyomizu M, Wing T. Mitochondrial proton leak kinetics and relationship with feed efficiency within a single genetic line of male broilers. Poult Sci. 2009;88(8):1683–1693.
  • Lu Z, He X, Ma B, et al. Serum metabolomics study of nutrient metabolic variations in chronic heat-stressed broilers. Br J Nutr. 2018;119(7):771–781.
  • Metzler-Zebeli BU, Magowan E, Hollmann M, et al. Assessing serum metabolite profiles as predictors for feed efficiency in broiler chickens reared at geographically distant locations. Br Poult Sci. 2017;50(6):729–738.
  • Metzler-Zebeli BU, Siegerstetter S-C, Magowan E, Lawlor PG, O’Connell NE, Zebeli Q. Feed restriction reveals distinct serum metabolome profiles in chickens divergent in feed efficiency traits. Metabolites. 2019;9(2):38.
  • Altelaar AFM, Munoz J, Heck AJR. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2012.14:35–48.
  • Boja ES, Kinsinger CR, Rodriguez H, Srinivas P. Integration of omics sciences to advance biology and medicine. Clin Proteomics. 2014;11(1):1–12.
  • Misra BB, Langefeld C, Olivier M, Cox LA. Integrated omics: tools, advances and future approaches. J Mol Endocrinol. 2019;62(1):R21–R45.
  • Raja K, Patrick M, Gao Y, Madu D, Yang Y, Tsoi LC. A review of recent advancement in integrating omics data with literature mining towards biomedical discoveries. Int J Genom. 2017;2017:6213474.
  • Fontanesi L. Metabolomics and livestock genomics: insights into a phenotyping frontier and its applications in animal breeding. Anim Front. 2016;6(1):73–79.
  • Kadarmideen HN, Von Rohr P, Janss LLG. From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm Genome. 2006;17(6):548–564.
  • Manzoni C, Kia DA, Vandrovcova J, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform. 2018;19(2):286–302.
  • Ji B, Ernest B, Gooding JR, et al. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting. BMC Genom. 2012;13:441–458.
  • Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):1–19.
  • Kohen R, Barlev J, Hornung G, et al. UTAP: user-friendly transcriptome analysis pipeline. BMC Bioinf. 2019;20(1):1–7.
  • Peng LY, Cui ZQ, Wu ZM, Fu BD, Yi PF, Shen HQ. RNA-seq profiles of chicken type II pneumocyte in response to Escherichia coli infection. PLoS One. 2019;14(6):1–14.
  • Romero JP, Ortiz-Estévez M, Muniategui A, et al. Comparison of RNA-seq and microarray platforms for splice event detection using a cross-platform algorithm. BMC Genom. 2018;19(1):1–14.
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–1145.
  • Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550(7676):345–353.
  • Tolani P, Gupta S, Yadav K, Aggarwal S, Yadav AK. Big data, integrative omics and network biology. In: Rossen D, Tatyana K, eds. Advances in Protein Chemistry and Structural Biology. 1st ed., Vol. 127. Elsevier Inc.; 2021:127–160.
  • Yalamanchili HK, Wan Y-W, Liu Z. Data analysis pipeline for RNA-seq experiments: From differential expression to cryptic splicing. Curr Protoc Bioinf. 2017;59(1):11.15.1–11.15.21.
  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–355.
  • Junot C, Fenaille F, Colsch B, Bécher F. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom Rev. 2014;33(6):471–500.
  • Skinner-Noble DO, Teeter RG. Components of feed efficiency in broiler breeding stock: energetics, performance, carcass composition, metabolism, and body temperature. Poult Sci. 2003;82(7):1080–1090.
  • Chambers JR, Lin CY. Age-constant versus weight-constant feed consumption and efficiency in broiler chickens. Poult Sci. 1988;67(4):565–576.
  • Hagger C. Phenotypic and genetic effects on feed intake of laying hens in different years. Poult Sci. 1991;70(3):434–439.
  • Izadnia HR, Tahmoorespur M, Reza M, Nassiri M, Esmaeilkhanien S. Gene expression profile analysis of residual feed intake for Isfahan native chickens using RNA-SEQ data. Ital J Anim Sci. 2019;18(1):246–260.
  • Katle J, Kolstad N. Selection for efficiency of food utilisation in laying hens: direct response in residual food consumption and correlated responses in weight gain, egg production and body weight. Br Poult Sci. 1991;32(5):939–953.
  • Kennedy BW, van der Werf JH, Meuwissen TH, Properties S, Intake RF. Genetic and statistical properties. J Anim Sci. 1993;71(12):3239–3250.
  • Wolynetz MS, Sibbald IR. Relationships between apparent and true metabolizable energy and the effects of a nitrogen correction. Poult Sci. 1984;63(7):1386–1399.
  • Lee G, Choi H, Sureshkumar S, et al. The 3D8 single chain variable fragment protein suppress infectious bronchitis virus transmission in the transgenic chickens. Res Vet Sci. 2019;123(September 2018):293–297.
  • Tran T, Narcy A, Carré B, et al. Detection of QTL controlling digestive efficiency and anatomy of the digestive tract in chicken fed a wheat-based diet. Genet Sel Evol. 2014;46(1):460–465.
  • Lee J, Karnuah AB, Rekaya R, Anthony NB, Aggrey SE. Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat ‑ type chickens. Mol Genet Genom. 2015;290(5):1673–1682.
  • Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1:1–5.
  • Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182–196.
  • Bakalarski CE, Donal SK.. A Biologist’s Field Guide to Multiplexed Quantitative Proteomics. Mol Cell Proteomics. 2016;15(5):1489–1497.
  • Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):1–15.
  • Black MB, Parks BB, Pluta L, et al. Comparison of microarrays and RNA-Seq for gene expression analyses of dose-response experiments. Toxicol Sci. 2014;137(2):385–403.
  • Fumagalli D, Blanchet-Cohen A, Brown D, et al. Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology. BMC Genom. 2014;15(1):1008–1012.
  • Wang C, Gong B, Bushel PR, et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol. 2014;32(9):926–932.
  • Cui X, Marshall B, Shi N, Chen SY, Rekaya R, Liu HX. RNA-Seq analysis on chicken taste sensory organs: an ideal system to study organogenesis. Sci Rep. 2017;7(1):1–13.
  • Nie Q, Lei M, Ouyang J, Zeng H, Yang G, Zhang X. Identification and characterization of single nucleotide polymorphisms in 6 growth-correlated genes in porcine by denaturing high performance liquid chromatography. Genet Sel Evol. 2005;37:339–360.
  • Liu W, Li D, Liu J, et al. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS One. 2011;6(12):e28600.
  • Aggrey SE, Karnuah AB, Sebastian B, Anthony NB. Genetic properties of feed efficiency parameters in meat-type chickens. Genet Sel Evol. 2010;42(1):25–25.
  • Xu Z, Ji C, Zhang Y, et al. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens. BMC Genom. 2016;17(1):1–14.
  • Schulman N, Tuiskula-Haavisto M, Siitonen L, Mäntysaari EA. Genetic variation of residual feed consumption in a selected Finnish egg-layer population. Poult Sci. 1994;73(10):1479–1484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.