205
Views
6
CrossRef citations to date
0
Altmetric
Brief Report

Evidence for selective sweeps in the MHC gene repertoire of various cattle breeds

, ORCID Icon, ORCID Icon, , , & show all

References

  • Bamshad M, Wooding SP. Signatures of natural selection in the human genome. Nat Rev Genet. 2003;4(2):99–111.
  • Sabeti PC, Schaffner SF, Fry B, et al. Positive natural selection in the human lineage. Science. 2006;312(5780):1614–1620.
  • Harris EE, Meyer D. The molecular signature of selection underlying human adaptations. Am J Phys Anthropol. 2006;131(S43):89–130.
  • Kumar H, Panigrahi M, Panwar A, et al. Machine-learning prospects for detecting selection signatures using population genomics data. J Comput Biol. c2022;29(9):943–960.
  • Hill AV. The immunogenetics of human infectious diseases. Annu Rev Immunol. 1998;16:593–617.
  • Hedrick PW, Parker KM, Gutierrez-Espeleta GA, et al. Major histocompatibility complex variation in the Arabian oryx. Evolution. 2000;54:2145.
  • Hull P. Notes on Dr Snell’s observations concerning the H-2 locus polymorphism. Heredity. 1970;25(3):461–465. PMID 5275401.
  • Cortázar-Chinarro M, Meyer-Lucht Y, Laurila A, et al. Signatures of historical selection on MHC reveal different selection patterns in the moor frog (Rana arvalis). Immunogenet. 2018;70(7):477–484.
  • Amills M, Ramiya V, Norimine J, et al. The major histocompatibility complex of ruminants. Rev Sci Tech. 1998;17(1):108–120.
  • Behl JD, Verma NK, Tyagi N, et al. The major histocompatibility complex in bovines: a review. ISRN Vet Sci. 2012;2012:872710.
  • Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity. 2001;15(3):363–374.
  • Hughes AL, Nei M. Pattern of nucleotide substitution at MHC class I loci reveals over dominant selection. Nature. 1988;335(6186):167–170.
  • Ellis SA, Ballingall KT. Cattle MHC: evolution in action? Immunol Rev. 1999;167:159–168.
  • Li C, Huang R, Nie F, et al. Organization of the addax major histocompatibility complex provides insights into ruminant evolution. Front Immunol. 2020;11:260.
  • Saravanan KA, Panigrahi M, Kumar H, et al. Selection signatures in livestock genome: a review of concepts, approaches and applications. Livest. Sci. 2020a;241:104257.
  • Rajawat D, Panigrahi M, Kumar H, et al. Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene. 2022a;816:146165.
  • Panigrahi M, Kumar H, Saravanan KA, et al. Trajectory of livestock genomics in South Asia: a comprehensive review. Gene. 2022;843:146808.
  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575.
  • Almeida OAC, Moreira GCM, Rezende FM, et al. Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics. 2019;20(1):449.
  • Forutan M, Ansari Mahyari S, Baes C, Melzer N, Schenkel FS, Sargolzaei M. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle. BMC Genomics. 2018;19(1):98.
  • Biscarini F, Cozzi P, Gaspa G, et al. detectRUNS: Detect runs of homozygosity and runs of heterozygosity in diploid genomes. 2018.
  • Saravanan KA, Panigrahi M, Kumar H, Bhushan B, Dutt T, Mishra BP. Genome-wide analysis of genetic diversity and selection signatures in three Indian sheep breeds. Livestock Science. 2020;243:104367.
  • Kavakiotis I, Triantafyllidis A, Ntelidou D, et al. TRES: identification of discriminatory and informative SNPs from population genomic data. J Hered. 2015;106(5):672–676.
  • Kijas JW, Lenstra JA, Hayes B, et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012;10(2):e1001258.
  • Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449(7164):913–918.
  • Saravanan KA, Panigrahi M, Kumar H, et al. K. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics. 2021;113(3):955–963.
  • Rajawat D, Panigrahi M, Kumar H, et al. Revealing genomic footprints of selection for fiber and production traits in three Indian sheep breeds. J Nat Fibers. 2022;19(16):14963–14974.
  • Hu ZL, Park CA, Reecy JM. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res. 2022;50(D1):D956–D961.
  • Goszczynski DE, Corbi-Botto CM, Durand HM, et al. Evidence of positive selection towards Zebuine haplotypes in the BoLA region of Brangus cattle. Animal. 2018;12(2):215–223.
  • Maiorano AM, Cardoso DF, Carvalheiro R, et al. Signatures of selection in Nelore cattle revealed by whole-genome sequencing data. Genomics. 2022;114(2):110304.
  • Xiwen G, Zhao S, Xiang W, et al. Genetic diversity and selective signature in dabieshan cattle revealed by whole-genome resequencing. Biology. 2022;11(9):1327.
  • Lewin HA. Genetic organization, polymorphism, and function of the bovine major histocompatibility complex. In The major histocompatibility complex region of domestic animal species. In: Schook LB, Lamont SJ, eds. CRC Series in Comparative Immunology, Chapter 4. Boca Raton, Florida: CRC Press; 1996:65–98.
  • Weigel KA, Freeman AE, Kehrli ME, Stear MJ, Kelley DH. Association of class I bovine lymphocyte antigen complex alleles with health and production traits in dairy cattle. J Dairy Sci. 1990;73(9):2538–2546.
  • Sun L, Gang X, Li Z, et al. Advances in Understanding the Roles of CD244 (SLAMF4) in immune regulation and associated diseases. Front Immunol. 2021;12:648182.
  • Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci. 1997;4(21):11514–11519.
  • Khaled YS, Elkord E, Ammori BJ. Macrophage inhibitory cytokine-1: a review of its pleiotropic actions in cancer. Cancer Biomark. 2012;11(5):183–190.
  • National Center for Biotechnology Information. PubChem Gene Summary for Gene 539491, GJA5 – gap junction protein alpha 5 (cattle). https://pubchem.ncbi.nlm.nih.gov/gene/GJA5/cattle. Accessed December, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.