252
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Detection of genome-wide copy number variation in Murrah buffaloes

ORCID Icon, ORCID Icon, , , , , & show all

References

  • Mills RE, Walter K, Stewart C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470(7332):59–65.
  • Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet. 2007;8(8):639–646.
  • Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–454.
  • Genova F, Longeri M, Lyons LA, Bagnato A, Strillacci MG. First genome-wide CNV mapping in FELIS CATUS using next generation sequencing data. BMC Genomics. 2018;19(1):13.
  • Guan D, Martínez A, Castelló A, et al. A genome-wide analysis of copy number variation in Murciano-Granadina goats. Genet Sel Evol. 2020;52(1):1–10.
  • Schiavo G, Dolezal MA, Scotti E, et al. Copy number variants in Italian Large White pigs detected using high‐density single nucleotide polymorphisms and their association with back fat thickness. Anim Genet. 2014;45(5):745–749.
  • Gorla E, Cozzi MC, Román-Ponce SI, et al. Genomic variability in Mexican chicken population using copy number variants. BMC Genet. 2017;18(1):1–11.
  • Lee YL, Bosse M, Mullaart E, Groenen MA, Veerkamp RF, Bouwman AC. Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics. 2020;21(1):1–15.
  • Solé M, Ablondi M, Binzer-Panchal A, et al. Inter-and intra-breed genome-wide copy number diversity in a large cohort of European equine breeds. BMC Genomics. 2019;20(1):1–12.
  • Kumar H, Panigrahi M, Saravanan KA, et al. Genome-wide detection of copy number variations in Tharparkar cattle. Anim Biotechnol. 2023;34(2):448–455.
  • Barazandeh A, Mohammadabadi MR, Ghaderi-Zefrehei M, Nezamabadipour H. Predicting CpG Islands and their relationship with genomic feature in cattle by hidden Markov Model Algorithm. Iran J Appl Anim Sci. 2016;6(3):571–579.
  • Masoudzadeh SH, Mohammadabadi MR, Khezri A, et al. Dlk1 gene expression in different tissues of lamb. Iran J Appl Animal Sci. 2020;10:669–677.
  • Mohammadabadi MR. 2019. Expression of calpastatin gene in Raini Cashmere goat using real-time PCR. Agricultural Biotechnology Journal. 2019;11(4):219–235.
  • Mohammadabadi MR, Asadollahpour Nanaei H. Leptin gene expression in Raini Cashmere goat using real-time PCR. Agric Biotechnol J. 2021;13:197–214.
  • Safaei SMH, Dadpasand M, Mohammadabadi M, et al. An Origanum majorana Leaf Diet influences myogenin gene expression, performance, and carcass characteristics in Lambs. Animals. 2022;13(1):14.
  • Bordbar F, Mohammadabadi M, Jensen J, Xu L, Li J, Zhang L. Identification of candidate genes regulating carcass depth and hind leg circumference in simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing. Animals. 2022;12(9):1103.
  • Mohamadipoor L, Mohammadabadi M, Amiri Z, et al. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet Res. 2021;17(1):1–9.
  • Mohammadinejad F, Mohammadabadi M, Roudbari Z, Sadkowski T. Identification of key genes and biological pathways associated with skeletal muscle maturation and hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals. 2022;12(24):3471.
  • Mohammadabadi M, Masoudzadeh SH, Khezri A, et al. Fennel (Foeniculum vulgare) seed powder increases delta-like non-canonical notch ligand 1 gene expression in testis, liver, and humeral muscle tissues of growing lambs. Heliyon. 2021;7(12):e08542.
  • Barazandeh A, Mohammadabadi MR, Ghaderi-Zefrehei M, Nezamabadipour H. Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech J Anim Sci. 2016;61(11):487–495.
  • Zhang C, Zhao J, Guo Y, et al. Genome-wide detection of copy number variations and evaluation of candidate copy number polymorphism genes associated with complex traits of pigs. Front Vet Sci. 2022;9:909039.
  • Vohra V, Chhotaray S, Gowane G, et al. Genome-wide association studies in Indian Buffalo revealed genomic regions for lactation and fertility. Front Genet. 2021;12:696109.
  • Safari A, Ghavi Hossein-Zadeh N, Shadparvar AA, Abdollahi Arpanahi R. A review on breeding and genetic strategies in Iranian buffaloes (Bubalus bubalis). Trop Anim Health Prod. 2018;50(4):707–714.
  • Biswas H, Roy BC, Dutta PK, et al. Prevalence and risk factors of Toxocara vitulorum infection in buffalo calves in coastal, northeastern and northwestern regions of Bangladesh. Vet Parasitol Reg Stud Rep. 2021;26:100656.
  • Patra B, Panigrahi M, Kumar H, Kaisa K, Dutt T, Bhushan B. Molecular and phylogenetic analysis of MHC class I exons 7-8 in a variety of cattle and buffalo breeds. Anim Biotechnol. 2021;2021:1–7.
  • Parasar P, Bhushan B, Panigrahi M, Kumar H, Kaisa K, Dutt T. Characterization of BoLA class II DQA and DQB by PCR-RFLP, cloning, and sequencing reveals sequence diversity in crossbred cattle. Anim Biotechnol. 2021;2021:1–11.
  • Vohra V, Singh NP, Chhotaray S, Raina VS, Chopra A, Kataria RS. Morphometric and microsatellite-based comparative genetic diversity analysis in Bubalus bubalis from North India. PeerJ. 2021;9:e11846.
  • Pal D, Panigrahi M, Chhotaray S, et al. Unraveling genetic admixture in the Indian crossbred cattle by different approaches using Bovine 50K BeadChip. Trop Anim Health Prod. 2022;54(2):135.
  • Kumar H, Panigrahi M, Chhotaray S, et al. Comparative analysis of five different methods to design a breed-specific SNP panel for cattle. Anim Biotechnol. 2021;32(1):130–136.
  • Rajawat D, Panigrahi M, Kumar H, et al. Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene. 2022a;816:146165.
  • Saravanan KA, Panigrahi M, Kumar H, et al. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics. 2021;113(3):955–963.
  • Liu S, Kang X, Catacchio CR, et al. Computational detection and experimental validation of segmental duplications and associated copy number variations in water buffalo (Bubalus bubalis). Funct Integr Genomics. 2019;19(3):409–419.
  • George L, Alex R, Sukhija N, et al. 2023. Genetic improvement of economic traits in Murrah buffalo using significant SNPs from genome-wide association study. Trop Anim Health Prod. 2023;55(3):199. doi:10.1007/s11250-023-03606-3
  • Tyagi SK, Mehrotra A, Singh A, et al. Comparative signatures of selection analyses identify loci under positive selection in the Murrah buffalo of India. Front Genet. 2021;12:673697.
  • Saravanan KA, Rajawat D, Kumar H, et al. Signatures of selection in riverine buffalo populations revealed by genome-wide SNP data. Anim Biotechnol. 2022;2022:1–12.
  • Ravi Kumar D, Joel Devadasan M, Surya T, et al. Genomic diversity and selection sweeps identified in Indian swamp buffaloes reveals it’s uniqueness with riverine buffaloes. Genomics. 2020;112(3):2385–2392.
  • Zhang X, Chen N, Chen H, Lei C, Sun T. Comparative analyses of copy number variations between swamp and river buffalo. Gene. 2022;830:146509.
  • Serres-Armero A, Davis BW, Povolotskaya IS, et al. Copy number variation underlies complex phenotypes in domestic dog breeds and other canids. Genome Res. 2021;31(5):762–774.
  • Goyache F, Pérez-Pardal L, Fernández I, et al. Identification and characterization of copy number variations regions in West African Taurine cattle. Animals. 2022;12(16):2130.
  • Hu L, Zhang L, Li Q, et al. Genome-wide analysis of CNVs in three populations of Tibetan sheep using whole-genome resequencing. Front Genet. 2022;13:971464.
  • Liu M, Cheng J, Chen Y, et al. Distribution of DGAT1 copy number variation in Chinese goats and its associations with milk production traits. Anim Biotechnol. 2021;2021:1–6.
  • Strillacci MG, Moradi-Shahrbabak H, Davoudi P, et al. A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes. BMC Genomics. 2021;22(1):305.
  • Zhang Y, Colli L, Barker J. Asian water buffalo: domestication, history and genetics. Anim Genet. 2020;51(2):177–191.
  • Pinto D, Darvishi K, Shi X, et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol. 2011;29(6):512–520.
  • Diskin SJ, Li M, Hou C, et al. Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Res. 2008;36(19):e126.
  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016. ISBN 978-3-319-24277-4.
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842.
  • Zulkufli NA. Molecular Genetics of Residual Feed Intake and Mitochondrial Function in Cattle [Ph.D. Thesis]; 2016. University of Adelaide, Australia.
  • Seabury CM, Oldeschulte DL, Saatchi M, et al. Genome-wide association study for feed efficiency and growth traits in US beef cattle. BMC Genomics. 2017;18(1):1–25.
  • Sha BY, Yang TL, Zhao LJ, et al. Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population. J Hum Genet. 2009;54(4):199–202.
  • Shebanits K, Andersson-Assarsson JC, Larsson I, Carlsson LMS, Feuk L, Larhammar D. Copy number ofpancreatic polypeptide receptor gene NPY4R correlates with body mass index and waist circumference. PLOS One. 2018;13(4):e0194668.
  • Dolebo AT, Khayatzadeh N, Melesse A, et al. Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis aries). Mamm Genome. 2019;30(11–12):339–352.
  • Pan C, Yang C, Wang S, Ma Y. Identifying key genes and functionally enriched pathways of diverse adipose tissue types in cattle. Front Genet. 2022;13:238.
  • Tang J, Ma Y, Yang Y, et al. A novel 28-bp Indel in IGF1R gene associated with growth traits across four Chinese cattle breeds. J Agric Sci. 2021;159(9–10):762–768.
  • Xie C, Jiang G, Fan C, et al. ARMC8α promotes proliferation and invasion of non-small cell lung cancer cells by activating the canonical Wnt signaling pathway. Tumour Biol. 2014;35(9):8903–8911.
  • Tahir MS, Porto-Neto LR, Gondro C, et al. Meta-analysis of heifer traits identified reproductive pathways in Bos indicus cattle. Genes. 2021;12(5):768.
  • Kumar M, Vohra V, Ratwan P, Gowane GR, Malhotra R. Sustainable multi-trait selection index based on production, reproduction, and health traits for genetic improvement of Murrah buffaloes. Anim Biotechnol. 2022;2022:1–9.
  • Du H, Taylor HS. The role of Hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb Perspect Med. 2015;6(1):a023002.
  • Ryu J, Lee C. Identification of contemporary selection signatures using composite log likelihood and their associations with marbling score in Korean cattle. Anim Genet. 2014;45(6):765–770.
  • Melo TP, Fortes MR, Bresolin T, Mota LF, Albuquerque LG, Carvalheiro R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci. 2018;96(10):4087–4099.
  • Yu Y, Pang Y, Zhao H, et al. Association of a missense mutation in the luteinizing hormone/choriogonadotropin receptor gene (LHCGR) with superovulation traits in Chinese Holstein heifers. J Animal Sci Biotechnol. 2012;3(1):1–5.
  • Widmer S, Seefried FR, von Rohr P, Häfliger IM, Spengeler M, Drögemüller C. A major QTL at the LHCGR/FSHR locus for multiple birth in Holstein cattle. Genet Sel Evol. 2021;53(1):1–15.
  • Kosińska-Selbi B, Suchocki T, Egger-Danner C, Schwarzenbacher H, Frąszczak M, Szyda J. Exploring the potential genetic heterogeneity in the incidence of hoof disorders in Austrian Fleckvieh and Braunvieh cattle. Front Genet. 2020;11:577116.
  • Huang Y, Li Y, Wang X, et al. An atlas of CNV maps in cattle, goat and sheep. Sci China Life Sci. 2021;64(10):1747–1764.
  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531–1545.
  • Wyman MJ, Cutter AD, Rowe L. Gene duplication in the evolution of sexual dimorphism. Evolution. 2012;66(5):1556–1566.
  • Sharp AH, Nucifora FC, Jr, Blondel O, et al. Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol. 1999;406(2):207–220.
  • Da Broi MG, Giorgi V, Wang F, Keefe DL, Albertini D, Navarro PA. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. J Assist Reprod Genet. 2018;35(5):735–751.
  • Rahmatalla SA, Müller U, Strucken EM, Reissmann M, Brockmann GA. The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. J Appl Genet. 2011;52(4):459–465.
  • Shi DS, Wang J, Yang Y, Lu FH, Li XP, Liu QY. DGAT1, GH, GHR, PRL and PRLR polymorphism in water buffalo (Bubalus bubalis). Reprod Domest Anim. 2012;47(2):328–334.
  • El-Komy SM, Saleh AA, Abdel-Hamid TM, El-Magd MA. Association of GHR polymorphisms with milk production in buffaloes. Animals. 2020;10(7):1203.
  • Lee KT, Chung WH, Lee SY, et al. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics. 2013;14(1):519.
  • Tawbeh A, Gondcaille C, Trompier D, Savary S. Peroxisomal ABC transporters: an update. Int J Mol Sci. 2021;22(11):6093.
  • Pérez O’Brien AM, Utsunomiya YT, Mészáros G, et al. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle. Genet Sel Evol. 2014;46(1):19.
  • Abo-Ismail MK, Brito LF, Miller SP, et al. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Genet Sel Evol. 2017;49(1):82.
  • Mishra DC, Sikka P, Yadav S, et al. Identification and characterization of trait-specific SNPs using ddRAD sequencing in water buffalo. Genomics. 2020;112(5):3571–3578.
  • Kolbehdari D, Wang Z, Grant JR, et al. A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J Anim Breed Genet. 2009;126(3):216–227.
  • Venturini GC, Cardoso DF, Baldi F, et al. Association between single-nucleotide polymorphisms and milk production traits in buffalo. Genet Mol Res. 2014;13(4):10256–10268.
  • de Camargo GM, Aspilcueta-Borquis RR, Fortes MR, et al. Prospecting major genes in dairy Buffaloes. BMC Genomics. 2015;16:872.
  • Lemos MV, Chiaia HL, Berton MP, et al. Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genomics. 2016;17(1):213.
  • Parker Gaddis KL, Null DJ, Cole JB. Explorations in genome-wide association studies and network analyses with dairy cattle fertility traits. J Dairy Sci. 2016;99(8):6420–6435.
  • Liu L, Zhou J, Chen CJ, et al. GWAS-based identification of new loci for milk yield, fat, and protein in Holstein cattle. Animals. 2020;10(11):2048.
  • Vite A, Li J, Radice GL. New functions for alpha-catenins in health and disease: from cancer to heart regeneration. Cell Tissue Res. 2015;360(3):773–783.
  • Clop A, Vidal O, Amills M. Copy number variation in the genomes of domestic animals. Anim Genet. 2012;43(5):503–517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.