842
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Dietary grape seed proanthocyanidin extract supplementation improves antioxidant capacity and lipid metabolism in finishing pigs

, ORCID Icon, , , , , & ORCID Icon show all

References

  • Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 2017;22(3):358.
  • Richard PU, Duskey JT, Stolarov S, et al. New concepts to fight oxidative stress. Expert Opin Drug Deliv. 2015;12(9):1527–1545.
  • Guo ZY, Chen XL, Huang ZQ, et al. Dietary dihydromyricetin supplementation enhances antioxidant capacity and improves lipid metabolism in finishing pigs. Food Funct. 2021;12(15):6925–6935.
  • Somogyi A, Rosta K, Pusztai P, et al. Antioxidant measurements. Physiol Meas. 2007;28(4):R41–R55.
  • Milani P, Ambrosi G, Gammoh O, et al. SOD1 and DJ-1 converge at Nrf2 pathway. Oxid Med Cell Longev. 2013;2013:836760–836712.
  • Yang H, Hua J, Wang C. Anti-oxidation and anti-aging activity of polysaccharide from Malus micromalus Makino fruit wine. Int J Biol Macromol. 2019;121:1203–1212.
  • Kisková T, Kassayová M. Resveratrol action on lipid metabolism in cancer. Int J Mol Sci. 2019;20(11):2704.
  • Ding H, Cao A, Li H, et al. Effects of Eucommia ulmoides leaf extracts on growth performance, antioxidant capacity and intestinal function in weaned piglets. J Anim Physiol Anim Nutr. 2020;104(4):1169–1177.
  • Vitseva O, Varghese S, Chakrabarti S, et al. Grape seed and skin extracts inhibit platelet function and release of reactive oxygen intermediates. J Cardiovasc Pharmacol. 2005;46(4):445–451.
  • Bayatli F, Akkuş D, Kilic E, et al. The protective effects of grape seed extract on MDA, AOPP, apoptosis and eNOS expression in testicular torsion. World J Urol. 2013;31(3):615–622.
  • Tyagi A, Raina K, Gangar S, et al. Differential effect of grape seed extract against human non-small-cell lung cancer cells. Nutr Cancer. 2013;65 Suppl 1(0 1):44–53.
  • Charradi K, Elkahoui S, Karkouch I, et al. Grape seed and skin extract alleviates high-fat diet-induced renal lipotoxicity and prevents copper depletion in rat. Appl Physiol Nutr Metab. 2013;38(3):259–267.
  • Bagchi D, Sen CK, Ray SD, et al. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res. 2003;523-524:87–97.
  • Li L, Geng X, Tian L, et al. Grape seed proanthocyanidins protect retinal ganglion cells by inhibiting oxidative stress and mitochondrial alteration. Arch Pharm Res. 2020;43(10):1056–1066.
  • Bashir N, Manoharan V, Miltonprabu S. Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling. J Nutr Biochem. 2016;32:128–141.
  • Baselga-Escudero L, Bladé C, Ribas-Latre A, et al. Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res. 2012;56(11):1636–1646.
  • Del Bas JM, Crescenti A, Arola-Arnal A, et al. Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring. J Nutr Biochem. 2015;26(12):1670–1677.
  • Pons Z, Guerrero L, Margalef M, et al. Effect of low molecular grape seed proanthocyanidins on blood pressure and lipid homeostasis in cafeteria diet-fed rats. J Physiol Biochem. 2014;70(2):629–637.
  • Pabst R. The pig as a model for immunology research. Cell Tissue Res. 2020;380(2):287–304.
  • Xu M, Chen XL, Chen DW, et al. Effects of dietary apple polyphenol supplementation on carcass traits, meat quality, muscle amino acid and fatty acid composition in finishing pigs. Food Funct. 2019;10(11):7426–7434.
  • Yamakoshi J, Saito M, Kataoka S, et al. Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food Chem Toxicol. 2002;40(5):599–607.
  • Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease. J Lab Clin Med. 1992;119(6):598–620.
  • Burke NC, Scaglia G, Boland HT, et al. Influence of two-stage weaning with subsequent transport on body weight, plasma lipid peroxidation, plasma selenium, and on leukocyte glutathione peroxidase and glutathione reductase activity in beef calves. Vet Immunol Immunopathol. 2009;127(3-4):365–370.
  • Liu JB, Yan HL, Zhang Y, et al. Effects of stale maize on growth performance, immunity, intestinal morphology and antioxidant capacity in broilers. Asian-Australas J Anim Sci. 2020;33(4):605–614.
  • Ozkan G, Ulusoy S, Alkanat M, et al. Antiapoptotic and antioxidant effects of GSPE in preventing cyclosporine A-induced cardiotoxicity. Ren Fail. 2012;34(4):460–466.
  • Jiang Y-M, Wang Y, Tan H-S, et al. Schisandrol B protects against acetaminophen-induced acute hepatotoxicity in mice via activation of the NRF2/ARE signaling pathway. Acta Pharmacol Sin. 2016;37(3):382–389.
  • Wang Y-Z, Zhang Y-C, Cheng J-S, et al. Protective effects of BML-111 on cerulein-induced acute pancreatitis-associated lung injury via activation of Nrf2/ARE signaling pathway. Inflammation. 2014;37(4):1120–1133.
  • Ohnuma T, Nakayama S, Anan E, et al. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Toxicol Appl Pharmacol. 2010;244(1):27–36.
  • Jarmi T, Agarwal A. Heme oxygenase and renal disease. Curr Hypertens Rep. 2009;11(1):56–62.
  • Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A. 1996;93(25):14960–14965.
  • McCord JM, Fridovich I. Superoxide dismutase: the first twenty years (1968–1988).Free Radic Biol Med. 1988;5(5-6):363–369.
  • Banning A, Deubel S, Kluth D, et al. The GI-GPx gene is a target for Nrf2. Mol Cell Biol. 2005;25(12):4914–4923.
  • Li W, Kong A-N. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 2009;48(2):91–104.
  • Liu B, Zhang H, Tan X, et al. GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3β in rat kidney. Oncotarget. 2017;8(26):42226–42237.
  • Rajput SA, Sun L, Zhang N-Y, et al. Grape seed proanthocyanidin extract alleviates AflatoxinB1-induced immunotoxicity and oxidative stress via modulation of NF-κB and Nrf2 signaling pathways in broilers. Toxins. 2019;11(1):23.
  • Ding Y, Li H, Li Y, et al. Protective effects of grape seed proanthocyanidins on the kidneys of diabetic rats through the Nrf2 signalling pathway. Evid Based Complement Alternat Med. 2020;2020:5205903.
  • Li Y, Ma Z, Jiang S, et al. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog Lipid Res. 2017;66:42–49.
  • Marcelin G, Clément K. The multifaceted progenitor fates in healthy or unhealthy adipose tissue during obesity. Rev Endocr Metab Disord. 2021;22(4):1111–1119.
  • Wang Y, Xue H, Sun M, et al. Prevention and control of obesity in China. Lancet Glob Health. 2019;7(9):e1166–e1167.
  • Longo M, Zatterale F, Naderi J, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019;20(9):2358.
  • Jones JEC, Esler WP, Patel R, et al. Inhibition of acetyl-CoA carboxylase 1 (ACC1) and 2 (ACC2) reduces proliferation and De Novo lipogenesis of EGFRvIII human glioblastoma cells. PLOS One. 2017;12(1):e0169566.
  • Langfort J, Donsmark M, Ploug T, et al. Hormone-sensitive lipase in skeletal muscle. Acta Physiol Scand. 2003;178(4):397–403.
  • Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–291.
  • Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis. Cardiovasc Res. 2008;79(2):208–217.
  • Peffer PL, Lin X, Odle J. Hepatic β-oxidation and carnitine palmitoyltransferase I in neonatal pigs after dietary treatments of clofibric acid, isoproterenol, and medium-chain triglycerides. Am J Physiol Regul Integr Comp Physiol. 2005;288(6):R1518–24.
  • Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. Embo J. 2007;26(7):1913–1923.
  • Zandbergen F, Plutzky J. PPARα in atherosclerosis and inflammation. Biochim Biophys Acta. 2007;1771(8):972–982.
  • Sun X, Zemel MB. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab . 2009;6(1):26.
  • Shi J, Yu J, Pohorly JE, et al. Polyphenolics in grape seeds-biochemistry and functionality. J Med Food. 2003;6(4):291–299.
  • Ding R-B, Bao J, Deng C-X. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci. 2017;13(7):852–867.
  • Kim H-S, Xiao C, Wang R-H, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12(3):224–236.
  • Caimari A, del Bas JM, Crescenti A, et al. Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. Int J Obes. 2013;37(4):576–583.
  • Gall C, von Stehle JH, Weaver DR. Mammalian melatonin receptors. Cell Tissue Res. 2002;309(1):151–162.
  • Serviddio G, Bellanti F, Vendemiale G. Free radical biology for medicine. Free Radic Biol Med. 2013;65:952–968.
  • Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–1060.
  • Cantó C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20(2):98–105.