895
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with FecB++ genotype

, , , , , & show all

References

  • Cheng S, Wang X, Zhang Q, et al. Comparative transcriptome analysis identifying the different molecular genetic markers related to production performance and meat quality in longissimus dorsi tissues of MG × STH and STH sheep. Genes. 2020;11(2):183.
  • He X, Li B, Fu S, et al. Identification of piRNAs in the testes of Sunite and Small-tailed Han sheep. Anim Biotechnol. 2021;32(1):13–20.
  • Tang J, Hu W, Chen S, et al. The genetic mechanism of high prolificacy in Small Tail Han sheep by comparative proteomics of ovaries in the follicular and luteal stages. J Proteomics. 2019;204:103394.
  • Medina-Montes A, Carrillo-Gonzalez DF, Hernández-Herrea DY. Association of a genetic polymorphism in the BMPR-1B gene, and non-genetic factors with the natural prolificacy of the Colombian-haired sheep. Trop Anim Health Prod. 2021;53(2):206.
  • El-Seedy AS, Hashem NM, El-Azrak KM, et al. Genetic screening of FecB, FecXG and FecXI mutations and their linkage with litter size in Barki and Rahmani sheep breeds. Reprod Domest Anim. 2017;52(6):1133–1137.
  • Chu M, Jia L, Zhang Y, et al. Polymorphisms of coding region of BMPR-IB gene and their relationship with litter size in sheep. Mol Biol Rep. 2011;38(6):4071–4076.
  • Ikegami K, Refetoff S, Van Cauter E, et al. Interconnection between circadian clocks and thyroid function. Nat Rev Endocrinol. 2019;15(10):590–600.
  • Silva JF, Ocarino NM, Serakides R. Thyroid hormones and female reproduction. Biol Reprod. 2018;99(5):907–921.
  • Cai YY, Lin N, Zhong LP, et al. Serum and follicular fluid thyroid hormone levels and assisted reproductive technology outcomes. Reprod Biol Endocrinol. 2019;17(1):90.
  • Wei Q, Fedail JS, Kong L, et al. Thyroid hormones alter estrous cyclicity and antioxidative status in the ovaries of rats. Anim Sci J. 2018;89(3):513–526.
  • Liu J, Guo M, Hu X, et al. Effects of thyroid dysfunction on reproductive hormones in female rats. Chin J Physiol. 2018;61(3):152–162.
  • Salleh N, Sayem ASM, Giribabu N, et al. Expression of proteins related to thyroid hormone function in the uterus is down-regulated at the day of implantation in hypothyroid pregnant rats. Cell Biol Int. 2019;43(5):486–494.
  • Di Paolo V, Mangialardo C, Zacà C, et al. Thyroid hormones T3 and T4 regulate human luteinized granulosa cells, counteracting apoptosis and promoting cell survival. J Endocrinol Invest. 2020;43(6):821–831.
  • Canipari R, Mangialardo C, Di Paolo V, et al. Thyroid hormones act as mitogenic and pro survival factors in rat ovarian follicles. J Endocrinol Invest. 2019;42(3):271–282.
  • Abecia JA, Forcada F, González-Bulnes A. Hormonal control of reproduction in small ruminants. Anim Reprod Sci. 2012;130(3–4):173–179.
  • Zhang X, Hong R, Chen W, et al. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019;92:103214.
  • Chen Q, Wang M, Wu S. The lncRNA MCF2L-AS1 controls osteogenic differentiation by regulating miR-33a. Cell Cycle. 2020;19(9):1059–1065.
  • Su T, Yu H, Luo G, et al. The interaction of lncRNA XLOC-2222497, AKR1C1, and progesterone in porcine endometrium and pregnancy. Int J Mol Sci. 2020;21(9):3232.
  • Zhou L, Li J, Liu J, et al. Investigation of the lncRNA THOR in mice highlights the importance of noncoding RNAs in mammalian male reproduction. Biomedicines. 2021;9(8):859.
  • Zhou M, Liu X, Qiukai E, et al. Long non-coding RNA Xist regulates oocyte loss via suppressing miR-23b-3p/miR-29a-3p maturation and upregulating STX17 in perinatal mouse ovaries. Cell Death Dis. 2021;12(6):540.
  • Wang W, He X, Di R, et al. Transcriptome analysis revealed long non-coding RNAs associated with mRNAs in sheep thyroid gland under different photoperiods. Genes. 2022;13(4):606.
  • Chang C, He X, Di R, et al. Thyroid transcriptomic profiling reveals the follicular phase differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han Sheep with two FecB genotypes. Genes. 2022;13(5):849.
  • Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4):413–435.
  • Zhang H, He L, Cai L. Transcriptome sequencing: RNA-seq. Methods Mol Biol. 2018;1754:15–27.
  • Hernández-Montiel W, Collí-Dula RC, Ramón-Ugalde JP, et al. RNA-seq transcriptome analysis in ovarian tissue of pelibuey breed to explore the regulation of prolificacy. Genes. 2019;10(5):358.
  • Li C, He X, Zhang Z, et al. Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes. BMC Genom Data. 2021;22(1):9.
  • Pertea M, Kim D, Pertea GM, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–1667.
  • Liu X, Liu K, Shan B, et al. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. J Anim Sci Biotechnol. 2018;9:76.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
  • Liu KS, Li TP, Ton H, et al. Advances of long noncoding RNAs-mediated regulation in reproduction. Chin Med J. 2018;131(2):226–234.
  • Brady K, Long JA, Liu HC, et al. Characterization of hypothalamo-pituitary-thyroid axis gene expression in the hypothalamus, pituitary gland, and ovarian follicles of turkey hens during the preovulatory surge and in hens with low and high egg production. Poult Sci. 2021;100(4):100928.
  • Li J, Cui P, Sun Q, et al. PSPC1 regulates CHK1 phosphorylation through phase separation and participates in mouse oocyte maturation. Acta Biochim Biophys Sin. 2021;53(11):1527–1537.
  • Li J, Qian WP, Sun QY. Cyclins regulating oocyte meiotic cell cycle progression. Biol Reprod. 2019;101(5):878–881.
  • Endo T, Mikedis MM, Nicholls PK, et al. Retinoic acid and germ cell development in the ovary and testis. Biomolecules. 2019;9(12):775.
  • Zaballos MA, Acuña-Ruiz A, Morante M, et al. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer. 2019;26(6):R319–R344.
  • Liu X, Zhang L, Yang L, et al. miR-34a/c induce caprine endometrial epithelial cell apoptosis by regulating circ-8073/CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. J Cell Physiol. 2020;235(12):10051–10067.
  • Cui J, Liu X, Yang L, et al. MiR-184 combined with STC2 promotes endometrial epithelial cell apoptosis in dairy goats via RAS/RAF/MEK/ERK pathway. Genes. 2020;11(9):1052.
  • Chen S, Liu B, Li J, et al. Talin1 regulates endometrial adhesive capacity through the Ras signaling pathway. Life Sci. 2021;274:119332.
  • Lee S, Jin JX, Taweechaipaisankul A, et al. Sonic hedgehog signaling mediates resveratrol to improve maturation of pig oocytes in vitro and subsequent preimplantation embryo development. J Cell Physiol. 2018;233(6):5023–5033.
  • Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci. 2018;18(1):8–20.
  • Li L, Shi X, Shi Y, et al. The signaling pathways involved in ovarian follicle development. Front Physiol. 2021;12:730196.
  • Guo Q, Li S, Wang X, et al. Paeoniflorin improves the in vitro maturation of benzo(a)pyrene treated porcine oocytes via effects on the sonic hedgehog pathway. Theriogenology. 2022;180:72–81.
  • Terauchi KJ, Miyagawa S, Iguchi T, et al. Hedgehog signaling regulates the basement membrane remodeling during folliculogenesis in the neonatal mouse ovary. Cell Tissue Res. 2020;381(3):555–567.
  • Lee S, Jin JX, Taweechaipaisankul A, et al. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes. J Pineal Res. 2017;63(3):e12424.
  • Liu X. ABC family transporters. Adv Exp Med Biol. 2019;1141:13–100.
  • Jiao XF, Huang CJ, Wu D, et al. Abce1 orchestrates M-phase entry and cytoskeleton architecture in mouse oocyte. Oncotarget. 2017;8(24):39012–39020.
  • Guerreiro DD, De Lima LF, Mbemya GT, et al. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression. Cell Tissue Res. 2018;372(3):611–620.
  • Quiroz A, Molina P, Santander N, et al. Ovarian cholesterol efflux: ATP-binding cassette transporters and follicular fluid HDL regulate cholesterol content in mouse oocytes. Biol Reprod. 2020;102(2):348–361.
  • Stewart TA, Davis FM. An element for development: calcium signaling in mammalian reproduction and development. Biochim Biophys Acta Mol Cell Res. 2019;1866(7):1230–1238.
  • Plewes MR, Hou X, Zhang P, et al. Yes-associated protein 1 is required for proliferation and function of bovine granulosa cells in vitro. Biol Reprod. 2019;101(5):1001–1017.
  • Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 2014;19(3):380–392.
  • Słowińska M, Paukszto Ł, Pardyak L, et al. Transcriptome and proteome analysis revealed key pathways regulating final stage of oocyte maturation of the turkey (Meleagris gallopavo). Int J Mol Sci. 2021;22(19):10589.
  • Zhang GB, Liu ZG, Wang J, et al. MiR-34 promotes apoptosis of lens epithelial cells in cataract rats via the TGF-β/Smads signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(7):3485–3491.
  • Bertoldo MJ, Cheung MY, Sia ZK, et al. Non-canonical cyclic AMP SMAD1/5/8 signalling in human granulosa cells. Mol Cell Endocrinol. 2019;490:37–46.
  • Zhang XY, Chang HM, Taylor EL, et al. BMP6 downregulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells. Endocrinology. 2018;159(8):2926–2938.
  • Ho CC, Bernard DJ. Bone morphogenetic protein 2 signals via BMPR1A to regulate murine follicle-stimulating hormone beta subunit transcription. Biol Reprod. 2009;81(1):133–141.
  • Ro EJ, Ryu SH, Park EY, et al. PIBF1 suppresses the ATR/CHK1 signaling pathway and promotes proliferation and motility of triple-negative breast cancer cells. Breast Cancer Res Treat. 2020;182(3):591–600.
  • Tao L, He XY, Wang FY, et al. Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Anim Genet. 2021;52(4):545–549.
  • Zhou M, Xu H, Zhang D, et al. Decreased PIBF1/IL6/p-STAT3 during the mid-secretory phase inhibits human endometrial stromal cell proliferation and decidualization. J Adv Res. 2021;30:15–25.
  • Denda K, Nakao-Wakabayashi K, Okamoto N, et al. Nrk, an X-linked protein kinase in the germinal center kinase family, is required for placental development and fetoplacental induction of labor. J Biol Chem. 2011;286(33):28802–28810.
  • Lestari B, Naito S, Endo A, et al. Placental mammals acquired functional sequences in NRK for regulating the CK2-PTEN-AKT pathway and placental cell proliferation. Mol Biol Evol. 2022;39(2):msab371.
  • Nanjappa DP, Babu N, Khanna-Gupta A, et al. Poly (A)-specific ribonuclease (PARN): more than just “mRNA stock clearing”. Life Sci. 2021;285:119953.
  • Bezerra FTG, Lima FEO, Paulino L, et al. In vitro culture of secondary follicles and prematuration of cumulus-oocyte complexes from antral follicles increase the levels of maturation-related transcripts in bovine oocytes. Mol Reprod Dev. 2019;86(12):1874–1886.