1,135
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of nanoselenium supplementation on lactation performance, nutrient digestion and mammary gland development in dairy cows

, , , , &

References

  • Akers RM. A 100-year review: mammary development and lactation. J Dairy Sci. 2017;100(12):10332–10352.
  • Molenaar AJ, Maclean PH, Gilmour ML, et al. Effect of whole-milk allowance on liveweight gain and growth of parenchyma and fat pads in the mammary glands of dairy heifers at weaning. J Dairy Sci. 2020;103(6):5061–5069.
  • Macrina AL, Kauf ACW, Kensinger RS. Effect of bovine somatotropin administration during induction of lactation in 15-month-old heifers on production and health. J Dairy Sci. 2011;94(9):4566–4573.
  • McCabe CJ, Suarez-Trujillo A, Teeple KA, Casey TM, Boerman JP. Chronic prepartum light-dark phase shifts in cattle disrupt circadian clocks, decrease insulin sensitivity and mammary development, and are associated with lower milk yield through 60 days postpartum. J Dairy Sci. 2021;104(2):2422–2437.
  • Xiao JX, Khan MZ, Ma YL, et al. The antioxidant properties of selenium and vitamin E; their role in periparturient dairy cattle health regulation. Antioxidants. 2021;10(10):1555.
  • Zhong JX, Jin SS, Wu KS, Yu GC, Tu LL, Liu L. Effect of nano-selenium loaded with Lycium barbarum polysaccharide on the proliferation of lens epithelial cells after UVB damage in vitro. Int J Ophthalmol. 2022;15(1):9–14.
  • Huang Z, Rose AH, Hoffmann PR. The role of selenium in infammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16(7):705–743.
  • Li F, Lutz PB, Pepelyayeva Y, Arnér ES, Bayse CA, Rozovsky S. Redox active motifs in selenoproteins. Proc Natl Acad Sci USA. 2014;111(19):6976–6981.
  • Wang C, Liu Q, Yang WZ, et al. Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livest Sci. 2009;126(1–3):239–244.
  • Ullah H, Khan RU, Mobashar M, et al. Effect of yeast-based selenium on blood progesterone, metabolites and milk yield in Achai dairy cows. Ital J Anim Sci. 2019;18(1):1445–1450.
  • Zhang ZD, Wang C, Du HS, et al. Effects of sodium selenite and coated sodium selenite on lactation performance, total tract nutrient digestion and rumen fermentation in Holstein dairy cows. Animal. 2020;14(10):2091–2099.
  • Najafnejad B, Aliarabi H, Tabatabaei MM, Alimohamady R. Effects of different forms of selenium supplementation on production performance and nutrient digestibility in lactating dairy cattle. Paper presented at: Proceedings of the Second International Conference on Agriculture and Natural Resources; December 2013; Kermanshah, Iran, p. 25–26.
  • Zhang Y, Xu Y, Chen B, Zhao B, Gao XJ. Selenium defciency promotes oxidative stress-induced mastitis via activating the NF-κB and MAPK pathways in dairy cow. Biol Trace Elem Res. 2021;200(6):2716–2726.
  • He SL, Guo X, Tan WH, et al. Effect of selenium deficiency on phosphorylation of the AMPK pathway in rats. Biol Trace Elem Res. 2016;169(2):254–260.
  • Shi L, Duan YL, Yao XL, Song RG, Ren YS. Effects of selenium on the proliferation and apoptosis of sheep spermatogonial stem cells in vitro. Anim Reprod Sci. 2020;215:106330.
  • Zhang BQ, Guo YM, Yan SM, Guo XY, Zhao YL, Shi BL. The protective effect of selenium on the lipopolysaccharide-induced oxidative stress and depressed gene expression related to milk protein synthesis in bovine mammary epithelial cells. Biol Trace Elem Res. 2020;197(1):141–148.
  • Zhang JS, Wang XF, Xu TW. Elemental selenium at nano size (Nano-se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 2008;101(1):22–31.
  • Han LQ, Pang K, Fu T, Phillips CJC, Gao TY. Nano-selenium supplementation increases selenoprotein (Sel) gene expression profiles and milk selenium concentration in lactating dairy cows. Biol Trace Elem Res. 2021;199(1):113–119.
  • NRC (National Research Council). Nutrient Requirements of Dairy Cattle. 7th ed. Washington, DC: National Academies Press; 2001.
  • Farr VC, Stelwagen K, Cate LR, Molenaar AJ, McFadden TB, Davis SR. An improved method for the routine biopsy of bovine mammary tissue. J Dairy Sci. 1996;79(4):543–549.
  • AOAC. Official Methods of Analysis. 17th ed. Arlington, VA: Association of Official Analytical Chemists; 2000.
  • Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74(10):3583–3597.
  • Chouinard PY, Corneau L, Barbano DM, Metzger LE, Bauman DE. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J Nutr. 1999;129(8):1579–1584.
  • Rico DE, Harvatine KJ. Induction of and recovery from milk fat depression occurs progressively in dairy cows switched between diets that differ in fiber and oil concentration. J Dairy Sci. 2013;96(10):6621–6630.
  • Williams CH, David DJ, Iismaa O. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J Agric Sci. 1962;59(3):381–385.
  • Agarwal N, Kamra DN, Chaudhary LC, Agarwal I, Sahoo A, Pathak NN. Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Lett Appl Microbiol. 2002;34(5):329–336.
  • Webb S, Bartos J, Boles R, Hasty E, Thuotte E, Thiex NJ. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03. J AOAC Int. 2014;97(3):700–711.
  • Kuzinski J, Zitnan R, Viergutz T, Legath J, Schweige M. Altered Na+/K+-ATPase expression plays a role in rumen epithelium adaptation in sheep fed hay ad libitum or a mixed hay/concentrate diet. Vet Med. 2011;56(1):36–48.
  • Busato S, Mezzetti M, Logan P, Aguilera N, Bionaz M. What’s the norm in normalization? A frightening note on the use of RT-qPCR in the livestock science. Gene. 2019;721S:100003.
  • NASEM (National Academies of Sciences, Engineering, and Medicine). Nutrient Requirements of Dairy Cattle. 8th ed. Washington, DC: National Academies Press; 2021.
  • Allen MS. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J Dairy Sci. 2000;83(7):1598–1624.
  • Mansson HL. Fatty acids in bovine milk fat. Food Nutr Res. 2008;52:1–3.
  • Reynolds CK. Production and metabolic effects of site of starch digestion in dairy cattle. Anim Feed Sci Technol. 2006;130(1–2):78–94.
  • Givens DI, Allison R, Cottrill B, Blake JS. Enhancing the selenium content of bovine milk through alteration of the form and concentration of selenium in the diet of the dairy cow. J Sci Food Agric. 2004;84(8):811–817.
  • Heard JW, Stockdale CR, Walker GP, et al. Increasing selenium concentration in milk: effects of amount of selenium from yeast and cereal grain supplements. J Dairy Sci. 2007;90(9):4117–4127.
  • Doyle PT, Stockdale CR, Jenkin ML, et al. Producing milk with uniform high selenium concentrations on commercial dairy farms. Anim Prod Sci. 2011;51(2):87–94.
  • Pulido E, Fernández M, Prieto N, et al. Effect of milking frequency and α-tocopherol plus selenium supplementation on sheep milk lipid composition and oxidative stability. J Dairy Sci. 2019;102(4):3097–3109.
  • Chilliard YD, Ferlay A, Mansbridge RM, Doreau M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann Zootech. 2000;49(3):181–205.
  • Loften JR, Linn JG, Drackley JK, Jenkins TC, Soderholm CG, Kertz AF. Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. J Dairy Sci. 2014;97(8):4661–4674.
  • Vázquez-Añón M, Nocek J, Bowman G, et al. Effects of feeding dietary antioxidant in diets with oxidized fat on lactation performance and antioxidant status of the cow. J Dairy Sci. 2008;91(8):3165–3172.
  • Orpin CG. The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim Feed Sci Technol. 1984;10(2–3):121–143.
  • Wang Y, McAllister TA. Rumen microbes, enzymes, and feed digestion-a review. Asian Australas J Anim Sci. 2002;15(11):1659–1676.
  • Hidiroglou M, Heaney DP, Jenkins KJ. Metabolism of inorganic selenium in rumen bacteria. Can J Physiol Pharmacol. 1968;46(2):229–232.
  • Mihaliková K, Gresáková L, Boldizárová K, Faix S, Leng L, Kisidayová S. The effects of organic selenium supplementation on the rumen ciliate population in sheep. Folia Microbiol (Praha). 2005;50(4):353–356.
  • Cheng KF, Wang C, Zhang GW, et al. Effects of betaine and rumen-protected folic acid supplementation on lactation performance, nutrient digestion, rumen fermentation and blood metabolites in dairy cows. Anim Feed Sci Technol. 2020;262:114445.
  • Reynolds CK, Kristensen NB. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. J Anim Sci. 2008;86(14):E293–E305.
  • Foley PA, Kenny DA, Lovett DK, Callan JJ, Boland TMO, Mara FP. Effect of dl-malic acid supplementation on feed intake, methane emissions, and performance of lactating dairy cows at pasture. J Dairy Sci. 2009;92(7):3258–3264.
  • Chan TM, Freedland RA. The effect of propionate on the metabolism of pyruvate and lactate in the perfused rat liver. Biochem J. 1972;127(3):539–543.
  • Nousiainen J, Shingfield KJ, Huhtanen P. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. J Dairy Sci. 2004;87(2):386–398.
  • Lee C, Hristov AN, Heyler KS, et al. Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows. J Dairy Sci. 2011;94(11):5544–5557.
  • Rosen JM. On hormone action in the mammary gland. CSH Perspect Biol. 2012;4(2):a013086–a013086.
  • Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA. 2006;103(7):2196–2201.
  • Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem. 2017;42(4):1431–1446.
  • Bionaz M, Loor J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics. 2008;9(1):366.
  • Ma L, Corl BA. Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. J Dairy Sci. 2012;95(7):3743–3755.
  • Bernard L, Leroux C, Chilliard Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv Exp Med Biol. 2008;606:67–108.
  • Lehner R, Kuksis A. Biosynthesis of triacylglycerols. Prog Lipid Res. 1996;35(2):169–201.
  • Sheng R, Yan SM, Qi LZ, Zhao YL, Jin L, Guo XY. Effect of the ratios of acetate and β-hydroxybutyrate on the expression of milk fat- and protein-related genes in bovine mammary epithelial cells. Czech J Anim Sci. 2015;60(12):531–541.
  • Bae D, Chon JW, Kim DH, Kim H, Seo KH. Effect of folic acid supplementation on proliferation and apoptosis in bovine mammary epithelial (MAC-T) cells. Anim Biotechnol. 2020;33(1):13–21.
  • Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079–3093.
  • Park SY, Mi SJ, Chang WH, Yu HS, Jang SB. Structural and functional insight into proliferating cell nuclear antigen. J Microbiol Biotechnol. 2016;26(4):637–647.
  • Zhang J, Ye J, Yuan C, et al. Exogenous H2S exerts biphasic effects on porcine mammary epithelial cells proliferation through PI3K/Akt-mTOR signaling pathway. J Cell Physiol. 2018;233(10):7071–7081.
  • Shamas-Din A, Kale J, Leber B, Andrews DW. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(4):a008714.
  • Pisani C, Ramella M, Boldorini R, et al. Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Sci Rep. 2020;10(1):7050.
  • Huang J, Qin YY, Lin CF, Huang XG, Zhang FR. MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway. Exp Ther Med. 2021;22(1):703.
  • Liu LH, Sun B, Zhang F, et al. lncRNA MPFAST promotes proliferation and fatty acid synthesis of bovine mammary epithelial cell by sponging miR-103 regulating PI3K-AKT pathway. J Agric Food Chem. 2022;70(38):12004–12013.
  • Li L, Liu L, Qu B, Li X, Gao X, Zhang M. Twinfilin 1 enhances milk bio-synthesis and proliferation of bovine mammary epithelial cells via the mTOR signaling pathway. Biochem Biophys Res Commun. 2017;492(3):289–294.