331
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in small tail han sheep with FecB BB genotype

, , , , , & show all

References

  • He X, Li B, Fu S, et al. Identification of piRNAs in the testes of Sunite and Small-tailed Han sheep. Anim Biotechnol. 2021;32(1):1–10.
  • Medina-Montes A, Carrillo-Gonzalez DF, Hernández-Herrea DY. Association of a genetic polymorphism in the BMPR-1B gene, and non-genetic factors with the natural prolificacy of the Colombian-haired sheep. Trop Anim Health Prod. 2021;53(2):206.
  • Wang W, La Y, Zhou X, et al. The genetic polymorphisms of TGFβ superfamily genes are associated with litter size in a Chinese indigenous sheep breed (Hu sheep). Anim Reprod Sci. 2018;189:19–29.
  • Li M, He N, Sun R, et al. Expression and polymorphisms of SMAD1, SMAD2 and SMAD3 genes and their association with litter size in Tibetan sheep (Ovis aries). Genes (Basel). 2022;13(12):2307.
  • Wang X, Guo X, He X, et al. Effects of FecB mutation on estrus, ovulation, and endocrine characteristics in Small Tail Han sheep. Front Vet Sci. 2021;8:709737.
  • Silva JF, Ocarino NM, Serakides R. Thyroid hormones and female reproduction. Biol Reprod. 2018;99(5):907–921.
  • Constantin S. Progress and challenges in the search for the mechanisms of pulsatile gonadotropin-releasing hormone secretion. Front Endocrinol (Lausanne). 2017;8:180.
  • Wang W, He X, Di R, et al. Transcriptome analysis revealed long non-coding RNAs associated with mRNAs in sheep thyroid gland under different photoperiods. Genes (Basel). 2022;13(4):606.
  • Chang C, He X, Di R, et al. Thyroid transcriptomic profiling reveals the follicular phase differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with two FecB genotypes. Genes (Basel). 2022;13(5):849.
  • Zhang Z, Tang J, Di R, et al. Integrated hypothalamic transcriptome profiling reveals the reproductive roles of mRNAs and miRNAs in sheep. Front Genet. 2019;10:1296.
  • Xia Q, Li Q, Gan S, et al. Exploring the roles of fecundity-related long non-coding RNAs and mRNAs in the adrenal glands of Small-tailed Han sheep. BMC Genet. 2020;21(1):39.
  • Pertea M, Kim D, Pertea GM, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–1667.
  • Sun L, Luo H, Bu D, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166–e166.
  • Kang YJ, Yang DC, Kong L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45(W1):W12–W16.
  • Mistry J, Chuguransky S, Williams L, et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412–d419.
  • Liu X, Liu K, Shan B, et al. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. J Anim Sci Biotechnol. 2018;9:76.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
  • Chen C, Tan H, Bi J, et al. Identification of competing endogenous RNA regulatory networks in vitamin a deficiency-Induced congenital scoliosis by transcriptome sequencing analysis. Cell Physiol Biochem. 2018;48(5):2134–2146.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.
  • Ren Y, Cowan RG, Harman RM, et al. Dominant activation of the hedgehog signaling pathway in the ovary alters theca development and prevents ovulation. Mol Endocrinol. 2009;23(5):711–723.
  • Gad A, Nemcova L, Murin M, et al. microRNA expression profile in porcine oocytes with different developmental competence derived from large or small follicles. Mol Reprod Dev. 2019;86(4):426–439.
  • Spate LD, Brown AN, Redel BK, et al. Dickkopf-related protein 1 inhibits the WNT signaling pathway and improves pig oocyte maturation. PloS One. 2014;9(4):e95114.
  • Zhu M, Xu M, Zhang J, et al. The role of Hippo pathway in ovarian development. Front Physiol. 2023;14:1198873.
  • Maher JY, Islam MS, Yin O, et al. The role of Hippo pathway signaling and A-kinase anchoring protein 13 in primordial follicle activation and inhibition. F S Sci. 2022;3(2):118–129.
  • Long H, Yu W, Yu S, et al. Progesterone affects clinic oocyte yields by coordinating with follicle stimulating hormone via PI3K/AKT and MAPK pathways. J Adv Res. 2021;33:189–199.
  • Zhang Y, Yang H, Wang L, et al. TOP2A correlates with poor prognosis and affects radioresistance of medulloblastoma. Front Oncol. 2022;12:918959.
  • Pei J, Xiong L, Guo S, et al. A single-cell transcriptomic atlas characterizes cell types and their molecular features in yak ovarian cortex. Fbsed J. 2023;37(1):e22718.
  • Cui S, Li F. RHPN1‑AS1 promotes ovarian carcinogenesis by sponging miR‑6884‑5p thus releasing TOP2A mRNA. Oncol Rep. 2021;46(4):221.
  • Brązert M, Kranc W, Chermuła B, et al. Human ovarian granulosa cells Isolated during an IVF procedure exhibit differential expression of genes regulating cell division and mitotic spindle formation. J Clin Med. 2019;8(12):2026.
  • Xu XL, Ma W, Zhu YB, et al. The microtubule-associated protein ASPM regulates spindle assembly and meiotic progression in mouse oocytes. PloS One. 2012;7(11):e49303.
  • Mori M, Tando S, Ogi H, et al. Loss of abnormal spindle-like, microcephaly-associated (Aspm) disrupts female folliculogenesis in mice during maturation and aging. Reprod Biol. 2022;22(3):100673.
  • Wang J, Chen H, Zeng X. Identification of hub genes associated with follicle development in multiple births sheep by WGCNA. Front Vet Sci. 2022;9:1057282.
  • Bianco B, Filipchiuk C, Christofolini DM, et al. The role of urviving in the pathogenesis of endometriosis. Minerva Med. 2020;111(1):21–32.
  • Jeong SG, Lee SE, Kim WJ, et al. Pioglitazone improves porcine oocyte maturation and subsequent parthenogenetic embryo development in vitro by increasing lipid metabolism. Mol Reprod Dev. 2019;86(9):1245–1254.