715
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-tissue gene expression profiling of cows with a genetic predisposition for low and high milk urea levels

, , , , &

References

  • Castillo A, Kebreab E, Beever D, France J. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J Anim Feed Sci. 2000;9(1):1–10.
  • Sajeev EPM, Amon B, Ammon C, Zollitsch W, Winiwarter W. Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: a meta-analysis. Nutr Cycl Agroecosyst. 2018;110(1):161–175.
  • Calsamiglia S, Ferret A, Reynolds C, Kristensen N, Van Vuuren A. Strategies for optimizing nitrogen use by ruminants. Animal. 2010;4(7):1184–1196.
  • Powell JM, Jackson-Smith DB, McCrory DF, Saam H, Mariola M. Validation of feed and manure data collected on Wisconsin dairy farms. J Dairy Sci. 2006;89(6):2268–2278.
  • Huhtanen P, Cabezas-Garcia EH, Krizsan SJ, Shingfield KJ. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows. J Dairy Sci. 2015;98(5):3182–3196.
  • Marini JC, Van Amburgh ME. Nitrogen metabolism and recycling in Holstein heifers12. J Anim Sci. 2003;81(2):545–552.
  • Firkins JL. Maximizing microbial protein synthesis in the rumen. J Nutr. 1996;126(4):1347S–1354S.
  • Lapierre H, Berthiaume R, Raggio G, et al. The route of absorbed nitrogen into milk protein. Anim Sci. 2005;80(1):11–22.
  • Kohn R, Dinneen M, Russek-Cohen E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J Anim Sci. 2005;83(4):879–889.
  • Polman JAE, Hunter RG, Speksnijder N, et al. Glucocorticoids modulate the mTOR pathway in the hippocampus: differential effects depending on stress history. Endocrinology. 2012;153(9):4317–4327.
  • Jonker JS, Kohn RA, Erdman RA. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J Dairy Sci. 1998;81(10):2681–2692.
  • Spek JW, Dijkstra J, van Duinkerken G, Hendriks WH, Bannink A. Prediction of urinary nitrogen and urinary urea nitrogen excretion by lactating dairy cattle in northwestern Europe and North America: a meta-analysis. J Dairy Sci. 2013;96(7):4310–4322.
  • Beatson P, Meier S, Cullen N, Eding H. Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion. Animal. 2019;13(10):2164–2171.
  • Jahnel RE, Blunk I, Wittenburg D, Reinsch N. Relationship between milk urea content and important milk traits in Holstein cattle. Animal. 2023;17(5):100767.
  • Honerlagen H, Reyer H, Segelke D, et al. Ruminal background of predisposed milk urea (MU) concentration in Holsteins. Front Microbiol. 2022;13:939711.
  • Honerlagen H, Reyer H, Abou-Soliman I, et al. Microbial signature inferred from genomic breeding selection on milk urea concentration and its relation to proxies of nitrogen-utilization efficiency in Holsteins. J Dairy Sci. 2023;106(7):4682–4697.
  • Marshall CJ, Garrett K, Beck MR, et al. Differences in the microbial community abundances of dairy cattle divergent for milk urea nitrogen and their potential implications. Appl Anim Sci. 2022;38(1):62–69.
  • Müller CBM, Görs S, Derno M, et al. Differences between Holstein dairy cows in renal clearance rate of urea affect milk urea concentration and the relationship between milk urea and urinary nitrogen excretion. Sci Total Environ. 2021;755(Pt 2):143198.
  • Krueger F. 2015. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore.
  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–915.
  • Gauthier-Coles G, Vennitti J, Zhang Z, et al. Quantitative modelling of amino acid transport and homeostasis in mammalian cells. Nat Commun. 2021;12(1):5282.
  • Mew NA, Simpson KL, Gropman AL, et al. 2017. Urea Cycle Disorders Overview GeneReviews®. Seattle, WA: University of Washington.
  • Bobbo T, Penasa M, Rossoni A, Cassandro M. Genetic aspects of milk urea nitrogen and new indicators of nitrogen efficiency in dairy cows. J Dairy Sci. 2020;103(10):9207–9212.
  • Marshall CJ, Beck MR, Garrett K, et al. Grazing dairy cows with low milk urea nitrogen breeding values excrete less urinary urea nitrogen. Sci Total Environ. 2020;739:139994.
  • Marshall CJ, Beck MR, Garrett K, et al. Dairy cows with different milk urea nitrogen breeding values display different grazing behaviours. Appl Anim Behav Sci. 2021;242:105429.
  • Marshall CJ, Beck MR, Garrett K, et al. Nitrogen Balance of Dairy Cows Divergent for Milk Urea Nitrogen Breeding Values Consuming Either Plantain or Perennial Ryegrass. Animals (Basel). 2021;11(8):2464.
  • Prahl MC, Müller CBM, Albrecht D, et al. Hepatic urea, creatinine and uric acid metabolism in dairy cows with divergent milk urea concentrations. Sci Rep. 2022;12(1):17593.
  • Parker D, Lomax M, Seal C, Wilton J. Metabolic implications of ammonia production in the ruminant. Proc Nutr Soc. 1995;54(2):549–563.
  • Gui L, Hong J, Raza SHA, Zan L. Genetic variants in SIRT3 transcriptional regulatory region affect promoter activity and fat deposition in three cattle breeds. Mol Cell Probes. 2017;32:40–45.
  • Mitchell S, Ellingson C, Coyne T, et al. Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases. Hum Mutat. 2009;30(1):56–60.
  • Kern P, Balzer NR, Blank N, et al. Creld2 function during unfolded protein response is essential for liver metabolism homeostasis. FASEB J. 2021;35:e21939.
  • Mehta MB, Shewale SV, Sequeira RN, et al. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis. J Biol Chem. 2017;292(25):10444–10454.
  • Yook J-S, Taxin ZH, Yuan B, et al. The SLC25A47 locus controls gluconeogenesis and energy expenditure. Proc Natl Acad Sci USA. 2023;120(9):e2216810120.
  • Kim J, Okamoto H, Huang Z, et al. Amino acid transporter Slc38a5 controls glucagon receptor inhibition-induced pancreatic α cell hyperplasia in mice. Cell Metab. 2017;25(6):1348–1361.e8. e1348.
  • Weiner ID, Mitch WE, Sands JM. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol. 2015;10(8):1444–1458.
  • Su W, Cao R, Zhang XY, Guan Y. Aquaporins in the kidney: physiology and pathophysiology. Am J Physiol Renal Physiol. 2020;318(1):F193–F203.
  • Du C, Xu H, Cao C, et al. Neutral amino acid transporter SLC38A2 protects renal medulla from hyperosmolarity-induced ferroptosis. Elife. 2023;12:e80647.
  • Ariyarathne HBPC, Correa-Luna M, Blair H, Garrick D, Lopez-Villalobos N. Can nitrogen excretion of dairy cows be reduced by genetic selection for low milk urea nitrogen concentration? Animals. 2021;11(3):737.
  • Honerlagen H, Reyer H, Oster M, et al. Identification of genomic regions influencing N-metabolism and N-excretion in lactating Holstein-Friesians. Front Genet. 2021;12:699550.
  • Canales BK, Smith JA, Weiner ID, et al. Polymorphisms in renal ammonia metabolism genes correlate with 24-hour urine pH. Kidney Int Rep. 2017;2(6):1111–1121.
  • Manjarin R, Bequette BJ, Wu G, Trottier NL. Linking our understanding of mammary gland metabolism to amino acid nutrition. Amino Acids. 2014;46(11):2447–2462.
  • Franzoi M, Niero G, Visentin G, et al. Variation of detailed protein composition of cow milk predicted from a large database of mid-infrared spectra. Animals. 2019;9(4):176.
  • Aggeler J, Park CS, Bissell MJ. Regulation of milk protein and basement membrane gene expression: the influence of the extracellular matrix. J Dairy Sci. 1988;71(10):2830–2842.
  • Schmidhauser C, Casperson GF, Myers CA, et al. A novel transcriptional enhancer is involved in the prolactin-and extracellular matrix-dependent regulation of beta-casein gene expression. Mol Biol Cell. 1992;3(6):699–709.
  • Bionaz M, Hurley WL, Loor J. 2012. Milk protein synthesis in the lactating mammary gland: insights from transcriptomics analyses. In: Hurley WL, ed. Milk Protein. Chapter 11. Rijeka: IntechOpen. doi: 10.5772/46054.
  • Weikard R, Goldammer T, Brunner RM, Kuehn C. Tissue-specific mRNA expression patterns reveal a coordinated metabolic response associated with genetic selection for milk production in cows. Physiol Genomics. 2012;44(14):728–739.
  • Ripoche P, Bertrand O, Gane P, et al. Human Rhesus-associated glycoprotein mediates facilitated transport of NH3 into red blood cells. Proc Natl Acad Sci USA. 2004;101(49):17222–17227.
  • Yu L, Liu T, Fu S, et al. Physiological functions of urea transporter B. Pflugers Arch. 2019;471(11–12):1359–1368.
  • Deschuyteneer A, Boeckstaens M, De Mees C, et al. SNPs altering ammonium transport activity of human Rhesus factors characterized by a yeast-based functional assay. PLoS One 2013;8(8):e71092.
  • Litman T, Søgaard R, Zeuthen T. Ammonia and urea permeability of mammalian aquaporins. In: Beitz E, ed. Aquaporins. Handbook of Experimental Pharmacology. Vol. 190. Heidelberg: Springer; 2009.