394
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

MiR-2284b regulation of α-s1 casein synthesis in mammary epithelial cells of dairy goats

, , , , , , & show all

References

  • Pirisi A, Lauret A, Dubeuf JP. Basic and incentive payments for goat and sheep milk in relation to quality. Small Ruminant Res. 2007;68(1–2):1–15.
  • Miller BA, Lu CD. Current status of global dairy goat production: an overview. Asian-Australas J Anim Sci. 2019;32(8):1219–1232.
  • Jia W, Du A, Fan Z, Shi L. Goat milk-derived short chain peptides: peptide LPYV as species-specific characteristic and their versatility bioactivities by MOF@Fe(3)O(4)@GO mesoporous magnetic-based peptidomics. Food Res Int. 2023;164:112442.
  • Zhao Y, Meng K, Yan Y, et al. Inhibition of cell proliferation and promotion of acinus-like structure formation from goat mammary epithelial cells via Wnt/β-catenin signaling. In Vitro Cell Dev Biol Anim. 2021;57(7):676–684.
  • Boutinaud M, Guinard-Flamenta J, Jammes H. The number and activity of mammary epithelial cells, determining factors for milk production. Reprod Nutr Dev. 2004;44(5):499–508.
  • Fowler PA, Knight CH, Cameron GG, Foster MA. In-vivo studies of mammary development in the goat using magnetic resonance imaging (MRI). J Reprod Fertil. 1990;89(1):367–375.
  • Arteche-Villasol N, Fernández M, Gutiérrez-Expósito D, Pérez V. Pathology of the mammary gland in sheep and goats. J Comp Pathol. 2022;193:37–49.
  • Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012;1(4):533–557.
  • Xuan R, Wang J, Zhao X, et al. T: Transcriptome analysis of goat mammary gland tissue reveals the adaptive strategies and molecular mechanisms of lactation and involution. Int J Mol Sci. 2022;23(22):14424.
  • Li P, Wilde CJ, Finch LM, Fernig DG, Rudland PS. Identification of cell types in the developing goat mammary gland. Histochem J. 1999;31(6):379–393.
  • Matitashvili E, Bramley AJ, Zavizion B. An in vitro approach to ruminant mammary gland biology. Biotechnol Adv. 1997;15(1):17–41.
  • Zhang H, Liu T, Li B, et al. Establishment of a stable β-casein protein-secreted laoshan dairy goat mammary epithelial cell line. Front Vet Sci. 2020;7:501.
  • Navarro-Calvo J, Esquiva G, Gómez-Vicente V, Valor LM. MicroRNAs in the mouse developing retina. Int J Mol Sci. 2023;24(3):2992.
  • Swarts DC, Makarova K, Wang Y, et al. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. 2014;21(9):743–753.
  • Lv Q, Li Q, Zhang P, et al. Disorders of MicroRNAs in peripheral blood mononuclear cells: as novel biomarkers of ankylosing spondylitis and provocative therapeutic targets. Biomed Res Int. 2015;2015:504208–504207.
  • Falzone L, Grimaldi M, Celentano E, Augustin LSA, Libra M. Identification of modulated microRNAs associated with breast cancer, diet, and physical activity. Cancers (Basel). 2020;12(9):2555.
  • Sha Z, Lai R, Zhang X, et al. A polymorphism at the microRNA binding site in the 3’ untranslated region of KRT81 is associated with breast cancer. DNA Cell Biol. 2020;39(10):1886–1894.
  • Wang J, Hao Z, Hu J, et al. Small RNA deep sequencing reveals the expressions of microRNAs in ovine mammary gland development at peak-lactation and during the non-lactating period. Genomics. 2021;113(1 Pt 2):637–646.
  • Sui M, Wang Z, Xi D, Wang H. miR-142-5P regulates triglyceride by targeting CTNNB1 in goat mammary epithelial cells. Reprod Domest Anim. 2020;55(5):613–623.
  • Wang H, Luo J, Zhang T, et al. MicroRNA-26a/b and their host genes synergistically regulate triacylglycerol synthesis by targeting the INSIG1 gene. RNA Biol. 2016;13(5):500–510.
  • Barozai MY. The novel 172 sheep (Ovis aries) microRNAs and their targets. Mol Biol Rep. 2012;39(5):6259–6266.
  • Lawless N, Vegh P, O’Farrelly C, Lynn DJ. The Role of microRNAs in bovine infection and immunity. Front Immunol. 2014;5:611.
  • Lee J, Lee S, Son J, et al. Analysis of circulating-microRNA expression in lactating Holstein cows under summer heat stress. PLoS One. 2020;15(8):e0231125.
  • Zhang C, Wu H, Wang Y, et al. Circular RNA of cattle casein genes are highly expressed in bovine mammary gland. J Dairy Sci. 2016;99(6):4750–4760.
  • Zhang Y, Liu J, Li W, et al. A regulatory circuit orchestrated by novel-miR-3880 modulates mammary gland development. Front Cell Dev Biol. 2020;8:383.
  • Bu Q, Liu S, Wang Z, et al. PITX2 regulates steroidogenesis in granulosa cells of dairy goat by the WNT/β-catenin pathway. Gen Comp Endocrinol. 2022;321–322:114027.
  • Vishnoi A, Rani S. miRNA biogenesis and regulation of diseases: an updated overview. Methods Mol Biol. 2023;2595:1–12.
  • Gu Z, Eleswarapu S, Jiang H. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett. 2007;581(5):981–988.
  • Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 2007;21(24):3238–3243.
  • Sato A, Yamamoto A, Shimotsuma A, et al. Intracellular microRNA expression patterns influence cell death fates for both necrosis and apoptosis. FEBS Open Bio. 2020;10(11):2417–2426.
  • Chen Z, Chu S, Liang Y, et al. miR-497 regulates fatty acid synthesis via LATS2 in bovine mammary epithelial cells. Food Funct. 2020;11(10):8625–8636.
  • Fan Y, Arbab AAI, Zhang H, et al. MicroRNA-193a-5p regulates the synthesis of polyunsaturated fatty acids by targeting fatty acid desaturase 1 (FADS1) in bovine mammary epithelial cells. Biomolecules. 2021;11(2):157.
  • Borchert GM, Holton NW, Williams JD, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements. 2011;1(1):8–17.
  • Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
  • Bulgari O, Caroli AM, Chessa S, Rizzi R, Gigliotti C. Variation of vitamin D in cow’s milk and interaction with β-lactoglobulin. Molecules. 2013;18(9):10122–10131.
  • Alexander LJ, Stewart AF, Mackinlay AG, Kapelinskaya TV, Tkach TM, Gorodetsky SI. Isolation and characterization of the bovine kappa-casein gene. Eur J Biochem. 1988;178(2):395–401.
  • Prinzenberg EM, Gutscher K, Chessa S, Caroli A, Erhardt G. Caprine kappa-casein (CSN3) polymorphism: new developments in molecular knowledge. J Dairy Sci. 2005;88(4):1490–1498.
  • Najafi M, Rahimi Mianji G, Ansari Pirsaraie Z. Cloning and comparative analysis of gene structure in promoter site of alpha-s1 casein gene in Naeinian goat and sheep. Meta Gene. 2014;2:854–861.
  • Rahmatalla SA, Arends D, Said Ahmed A, et al. Capture sequencing to explore and map rare casein variants in goats. Front Genet. 2021;12:620253.