834
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Vitamin B5 supplementation enhances intestinal development and alters microbes in weaned piglets

, , , , , , ORCID Icon & ORCID Icon show all

References

  • Pluske JR, Turpin DL, Kim J-C. Gastrointestinal tract (gut) health in the young pig. Anim Nutr. 2018;4(2):1–14.
  • Bischoff SC. ‘Gut health’: a new objective in medicine? BMC Med. 2011;9(1):24.
  • Dong GZ, Pluske JR. The low feed intake in newly-weaned pigs: problems and possible solutions. Asian Australas J Anim Sci. 2007;20(3):440–452.
  • Goldstein R, Hebiguchi T, Luk G, et al. The effects of total parenteral nutrition on gastrointestinal growth and development. J Pediatr Surg. 1985;20(6):785–791.
  • Shulman R, Fiorotto M, Sheng H, Garza C. Effect of different total parenteral nutrition fuel mixes on the body composition of infant miniature pigs. Pediatr Res. 1984;18(3):261–265.
  • Jayaraman B, Nyachoti CM. Husbandry practices and gut health outcomes in weaned piglets: a review. Anim Nutr. 2017;3(3):205–211.
  • Moeser A, Pohl CS, Rajput M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim Nutr. 2017;3(4):313–321.
  • Chen C, Wang Z, Li J, et al. Dietary vitamin E affects small intestinal histomorphology, digestive enzyme activity, and the expression of nutrient transporters by inhibiting proliferation of intestinal epithelial cells within jejunum in weaned piglets. J Anim Sci. 2019;97(3):1212–1221.
  • Wang L, Zou L, Li J, Yang H, Yin Y. Effect of dietary folate level on organ weight, digesta pH, short-chain fatty acid concentration, and intestinal microbiota of weaned piglets. J Anim Sci. 2021;99(1):skab015.
  • Wang Z, Li J, Wang Y, et al. Dietary vitamin A affects growth performance, intestinal development, and functions in weaned piglets by affecting intestinal stem cells. J Anim Sci. 2020;98(2):skaa020.
  • Wang Z, Yi Z, Wang Q, et al. Effect of different levels of niacin on serum biochemical parameters, antioxidant status, cytokine levels, inflammatory gene expression and colonic microbial composition in weaned piglets. Animals (Basel). 2022;12(21):3018.
  • Ragaller V, Lebzien P, Südekum K, Hüther L, Flachowsky G. Pantothenic acid in ruminant nutrition: a review. J Anim Physiol Anim Nutr (Berl). 2011;95(1):6–16.
  • Nitto T, Onodera K. Linkage between coenzyme a metabolism and inflammation: roles of pantetheinase. J Pharmacol Sci. 2013;123(1):1–8.
  • Slyshenkov V, Dymkowska D, Wojtczak L. Pantothenic acid and pantothenol increase biosynthesis of glutathione by boosting cell energetics. FEBS Lett. 2004;569(1–3):169–172.
  • Wojtczak L, Slyshenkov V. Protection by pantothenic acid against apoptosis and cell damage by oxygen free radicals—the role of glutathione. Biofactors. 2003;17(1–4):61–73.
  • He W, Hu S, Du X, et al. Vitamin B5 reduces bacterial growth via regulating innate immunity and adaptive immunity in mice infected with mycobacterium tuberculosis. Front Immunol. 2018;9:365.
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987–995.
  • Lerner T, Borel S, Gutierrez M. The innate immune response in human tuberculosis. Cell Microbiol. 2015;17(9):1277–1285.
  • Abiko Y. Metabolism of coenzyme A. In: Metabolism of Sulfur Compounds. New York: Academic Press; 1975:1–25.
  • Lin Y-H, Lin H-Y, Shiau S-Y. Estimation of dietary pantothenic acid requirement of grouper, Epinephelus malabaricus according to physiological and biochemical parameters. Aquaculture. 2012;324–325:92–96.
  • Kobayashi D, Kusama M, Onda M, Nakahata N. The effect of pantothenic acid deficiency on keratinocyte proliferation and the synthesis of keratinocyte growth factor and collagen in fibroblasts. J Pharmacol Sci. 2011;115(2):230–234.
  • NRC. Nutrient Requirements of Swine. 11th rev. ed. Washington, DC: The National Academies Press; 2012.
  • Böhmer B, Roth-Maier D. Effects of high-level dietary B-vitamins on performance, body composition and tissue vitamin contents of growing/finishing pigs. J Anim Physiol Anim Nutr (Berl). 2007;91(1–2):6–10.
  • Groesbeck C, Goodband R, Tokach M, Dritz S, Nelssen J, DeRouchey J. Effects of pantothenic acid on growth performance and carcass characteristics of growing-finishing pigs fed diets with or without ractopamine hydrochloride. J Anim Sci. 2007;85(10):2492–2497.
  • Lorenzett M, Armién A, Henker L, et al. Motor and somatosensory degenerative myelopathy responsive to pantothenic acid in piglets. Vet Pathol. 2023;60(1):101–114.
  • Tang J, Zhang B, Liang S, et al. Effects of pantothenic acid on growth performance and antioxidant status of growing male white Pekin ducks. Poult Sci. 2020;99(9):4436–4441.
  • Wang B, Zhang X, Yue B, et al. Effects of pantothenic acid on growth performance, slaughter performance, lipid metabolism, and antioxidant function of Wulong geese aged one to four weeks. Anim Nutr. 2016;2(4):312–317.
  • Deng Q, Wang Y, Wang X, et al. Effects of dietary iron level on growth performance, hematological status, and intestinal function in growing-finishing pigs. J Anim Sci. 2021;99(1):skab002.
  • Zhou J, Qin Y, Xiong X, et al. Effects of iron, vitamin A, and the interaction between the two nutrients on intestinal development and cell differentiation in piglets. J Anim Sci. 2021;99(10):skab258.
  • Deng Q, Shao Y, Wang Q, et al. Effects and interaction of dietary electrolyte balance and citric acid on the intestinal function of weaned piglets. J Anim Sci. 2020;98(5):skaa106.
  • Wang L, Yan S, Li J, et al. Rapid communication: The relationship of enterocyte proliferation with intestinal morphology and nutrient digestibility in weaning piglets. J Anim Sci. 2019;97(1):353–358.
  • Yang C, Wang M, Tang X, et al. Effect of dietary amylose/amylopectin ratio on intestinal health and cecal microbes’ profiles of weaned pigs undergoing feed transition or challenged with lipopolysaccharide. Front Microbiol. 2021;12:693839.
  • Krehl WA. Pantothenic acid in swine nutrition. Nutr. Rev. 1957;15(9):275–277.
  • Yang H, Xiong X, Yin Y. Development and renewal of intestinal villi in pigs. In: Nutritional and Physiological Functions of Amino Acids in Pigs. Vienna; New York: Springer; 2013: 29–47.
  • Montagne L, Pluske J, Hampson D. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol. 2003;108(1–4):95–117.
  • Wang M, Huang H, Hu Y, et al. Effects of dietary microencapsulated tannic acid supplementation on the growth performance, intestinal morphology, and intestinal microbiota in weaning piglets. J Anim Sci. 2020;98(5):skaa112.
  • Wang M, Wang L, Tan X, et al. The developmental changes in intestinal epithelial cell proliferation, differentiation, and shedding in weaning piglets. Anim Nutr. 2022;9:214–222.
  • Mansbach C, Gorelick F. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol. 2007;293(4):G645–650.
  • Yang H, Wang X, Xiong X, Yin Y. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis. Sci Rep. 2016;6(1):31917.
  • Gehart H, Clevers HJ. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 2019;16(1):19–34.
  • Yang H, Xiong X, Wang X, Yin Y. Mammalian target of rapamycin signaling pathway changes with intestinal epithelial cells renewal along crypt-villus axis. Cell Physiol Biochem. 2016;39(2):751–759.
  • Yang H, Li F, Kong X, et al. Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways. Cytokine. 2012;60(3):646–652.
  • Pluske JR, Hampson DJ, Williams IH. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest Prod Sci. 1997;51(1–3):215–236.
  • Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr. 2019;6:48.
  • McCauley HA, Guasch G. Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. Trends Mol Med. 2015;21(8):492–503.
  • Lanska DJ. The discovery of niacin, biotin, and pantothenic acid. Ann Nutr Metab. 2012;61(3):246–253.
  • Moiseenok A, Kanunnikova N. Brain CoA and acetyl CoA metabolism in mechanisms of neurodegeneration. Biochemistry (Mosc). 2023;88(4):466–480.
  • Wang Y, Yang H, Geerts C, et al. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab. 2023;138(1):106966.
  • Birchenough GM, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015;8(4):712–719.
  • Gribble F, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol. 2019;15(4):226–237.
  • Liu B, Wang W, Zhu X, et al. Response of gut microbiota to dietary fiber and metabolic interaction with SCFAs in piglets. Front Microbiol. 2018;9:2344.
  • Wang M, Yang C, Wang Q, et al. Effects of dietary amylose-amylopectin ratio on growth performance and intestinal digestive and absorptive function in weaned piglet response to lipopolysaccharide. Animals (Basel). 2022;12(14):1833.
  • Williams B, Verstegen M, Tamminga S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev. 2001;14(2):207–228.
  • Zhao L, Lou H, Peng Y, Chen S, Fan L, Li XJ. Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota. Diabetes Res Clin Pract. 2020;169:108418.
  • Tang S, Zhang S, Zhong R, et al. Time-course alterations of gut microbiota and short-chain fatty acids after short-term lincomycin exposure in young swine. Appl Microbiol Biotechnol. 2021;105(21-22):8441–8456.
  • Chen Y, Xie Y, Zhong R, et al. Effects of xylo-oligosaccharides on growth and gut microbiota as potential replacements for antibiotic in weaning piglets. Front Microbiol. 2021;12:641172.
  • Wang X, Tsai T, Deng F, et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome. 2019;7(1):109.
  • Wang Y, Xu L, Liu J, Zhu W, Mao S. A high grain diet dynamically shifted the composition of mucosa-associated microbiota and induced mucosal injuries in the colon of sheep. Front Microbiol. 2017;8:2080.
  • Kyoung H, Lee J, Cho J, et al. Dietary glutamic acid modulates immune responses and gut health of weaned pigs. Animals (Basel). 2021;11(2):504.
  • Nomoto R, Ishida-Kuroki K, Nakagawa I, Sekizaki T. Complete genome sequences of four Streptococcus parasuis strains obtained from saliva of domestic pigs in Japan. Microbiol Resour Announc. 2022;11(2):e0124521.
  • Ding S, Azad M, Fang J, et al. Impact of sulfur-containing amino acids on the plasma metabolomics and intestinal microflora of the sow in late pregnancy. Food Funct. 2019;10(9):5910–5921.
  • Mou Q, Yang H, Yin Y, Huang P. Amino acids influencing intestinal development and health of the piglets. Animals (Basel). 2019;9(6):302.