285
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effect of miR-23b-3p on regulating GH by targeting POU1F1 in Yanbian yellow cattle

, , , , , & show all

References

  • Lv YQ, Ji S, Chen X, et al. Effects of crocin on frozen thawed sperm apoptosis, protamine expression, and membrane lipid oxidation in Yanbian yellow cattle. Reprod Domest Anim. 2020;55(8):1–11.
  • Yan CG, Zhao CY, Qiu ZH, et al. Differential expression of PPARγ, FASN, and ACADM genes in various adipose tissues and longissimus dorsi muscle from Yanbian yellow cattle and Yan yellow cattle. Asian-Australas J Anim Sci. 2014;27(1):10–18.
  • Yin BZ, Fang JC, Zhang JS, et al. Correlations between single nucleotide polymorphisms in FABP4 and meat quality and lipid metabolism gene expression in Yanbian yellow cattle. PLoS One. 2020;15(6):e0234328.
  • Xue Q, Zhang G, Li T, et al. Transcriptomic profile of leg muscle during early growth in chicken. PLoS One. 2017;12(3):e0173824.
  • Bou T, Ding W, Liu H, et al. A genome-wide landscape of mRNAs, miRNAs, lncRNAs, and circRNAs of skeletal muscles during dietary restriction in Mongolian horses. Comparative Biochem Physiol. Part D. Genom Proteomics. 2023;46:101084–101093.
  • Ullah Y, Li C, Li X, et al. Identification and profiling of pituitary microRNAs of sheep during anestrus and estrus stages. Animals. 2020;10(3):402–412.
  • Kumar M, Aggarwal A, Kaul G, et al. Novel and known miRNAs in zebu (Tharparkar) and crossbred (Karan-Fries) cattle under heat stress. Funct Integr Genomics 2021;21(3–4):405–419.
  • Liu Z, Li C, Li X, et al. Expression profiles of microRNAs in skeletal muscle of sheep by deep sequencing. Asian-Australas J Anim Sci. 2019;32(6):757–766.
  • Zhang WW, Sun XF, Tong HL, et al. Effect of differentiation on microRNA expression in bovine skeletal muscle satellite cells by deep sequencing. Cell Mol Biol Lett. 2016;21(1):8.
  • Zhou S, Li S, Zhang WW, et al. MiR-139 promotes differentiation of bovine skeletal muscle-derived satellite cells by regulating DHFR gene expression. J Cell Physiol. 2019;234(1):632–641.
  • Davoli R, Gaffo E, Zappaterra M, et al. Identification of differentially expressed small RNAs and prediction of target genes in Italian Large White pigs with divergent backfat deposition. Anim Genet. 2018;49(3):205–214.
  • Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013;12(1):103.
  • Melnik BC, John SM, Schmitz G. Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med. 2014;12(1):43–53.
  • Melnik B. The pathogenic role of persistent milk signaling in mTORC1-and milk- microRNA-driven type 2 diabetes mellitus. Curr Diabetes Rev. 2015;11(1):46–62.
  • Chen T, Xi QY, Ye RS, et al. Exploration of microRNAs in porcine milk exosomes. BMC Genomics. 2014;15(1):100.
  • Jing YH, Gan ML, Xie ZW, et al. Characteristics of microRNAs in skeletal muscle of intrauterine growth-restricted pigs. Genes (Basel). 2023;14(7):1372–1384.
  • Vgontzas AN, Mastorakos G, Bixler EO, et al. Sleep deprivation effects on the activity of the hypothalamic-pituitary-adrenal and growth axes:potential clinical implications. Clin Endocrinol (Oxf). 2010;51(2):205–215.
  • Allen CD, Lee S, Koob GF, et al. Immediate and prolonged effects of alcohol exposure on the activity of the hypothalamic-pituitary-adrenal axis in adult and adolescent rats. Brain Behav Immun. 2011;25 Suppl 1(Suppl 1):S50–S60.
  • Ismailogullari S, Omer FB, Karaca Z, et al. Dynamic evaluation of the hypothalamic- pituitary-adrenal and growth hormone axes and metabolic consequences in chronic insomnia; a case–control study. Sleep Biol Rhythms. 2017;15(4):317–326.
  • Santos FG, Santos AO, Teixeira R, et al. Gene expression of IGF-1 in the ovaries of female Wistar rats submitted to growth hormone and exercises. Animal Reproduc. 2017;14:195–200.
  • Piotrowska K, Sluczanowska-Glabowska S, Kucia M, et al. Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and insulin-like growth factor-1. Folia Histochem Cytobiol. 2015;53(3):249–258.
  • Yakar S, Isaksson O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. Growth Horm IGF Res. 2016;28:26–42.
  • Hansen TK, Fisker S, Hansen B, et al. Impact of GHBP interference on estimates of GH and GH pharmacokinetics. Clin Endocrinol (Oxf). 2010;57(6):779–786.
  • Adam G, Denise W, Andrew D, et al. A long-lived mouse lacking both growth hormone and growth hormone receptor: A new animal model for aging studies. J Gerontol. 2017;72(8):1054–1061.
  • Andrzej B, Nana Q. Impact of growth hormone-related mutations on mammalian aging. Front Genet. 2018;27(9):586–593.
  • Baumann G, Maheshwari H. The dwarfs of Sindh: Severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. Acta Paediatr. Suppl. 2015;86(423):33–38.
  • Gesing A, Wiesenborn D, Do A, et al. A long-lived mouse lacking both growth hormone and growth hormone receptor: a new animal model for aging studies. J Gerontol A Biol Sci Med Sci. 2017;72(8):1054–1061.
  • Qi QE, Xi QY, Ye RS, et al. Alteration of the miRNA expression profile in male porcine anterior pituitary cells in response to GHRH and CST and analysis of the potential roles for miRNAs in regulating GH. Growth Horm IGF Res. 2015;25(2):66–74.
  • Ji JX, Jin TH, Zhang R, et al. The effect of miR-6523a on growth hormone secretion in pituitary cells of Yanbian yellow cattle. Can J Anim Sci. 2020;100(4):657–664.
  • Lou AG, Jin TH, Zhang R, et al. The effect of miR-93 on GH secretion in pituitary cells of Yanbian yellow cattle. Anim Biotechnol. 2021;32(3):292–299.
  • Fang Z, Rajewsky N. The impact of miRNA target sites in coding sequences and in 3′ UTRs. PLoS One. 2011;6(3):e18067.
  • Yu XP, Lin J, Donald JZ, et al. Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Res. 2008;36(20):6494–6503.
  • Cheng YY, Chen T, Song J, et al. Pituitary miRNAs target GHRHR splice variants to regulate GH synthesis by mediating different intracellular signalling pathways. RNA Biol. 2020;17(12):1754–1766.
  • Liang J, Li Y, Daniels G, et al. LEF1 targeting EMT in prostate cancer invasion is regulated by miR-34a. Mol Cancer Res. 2015;13(4):681–688.
  • Song C, Gao B, Teng Y, et al. MspI polymorphisms in the 3rd intron of the swine POU1F1 gene and their associations with growth performance. J Appl Genet. 2005;46(3):285–289.
  • Peng B, Hu S, Jun Q, et al. MicroRNA-200b targets CREB1 and suppresses cell growth in human malignant glioma. Mol Cell Biochem. 2013;379(1–2):51–58.
  • Fan X, Mao Z, He D, et al. Expression of somatostatin receptor subtype 2 in growth hormone-secreting pituitary adenoma and the regulation of miR-185. J Endocrinol Invest. 2015;38(10):1117–1128.
  • Romero CJ, Pine-Twaddell E, Sima DI, et al. Insulin-like growth factor 1 mediates negative feedback to somatotroph GH expression via POU1F1/CREB binding protein interactions. Mol Cell Biol. 2012;32(21):4258–4269.
  • Houbaviy B, Dennis L, Jaenisch R, et al. Characterization of a highly variable eutherian microRNA gene. RNA. 2005;11(8):1245–1257.
  • Vorozheykin PS, Titov II. How miRNA structure of animals influences their biogenesis. Russ J Genet. 2020;56(1):17–29.