447
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Retinoic acid signalling inhibits myogenesis by blocking MYOD translation in pig skeletal muscle cells

, , , & ORCID Icon

References

  • Barazandeh A, Mohammadabadi M, Ghaderi-Zefrehei M, Nezamabadipour H. Predicting CpG islands and their relationship with genomic feature in cattle by hidden Markov model algorithm. Iran J Appl Animal Sci. 2016;6:1–14.
  • Masoudzadeh SH, Mohammadabadi MR, Khezri A, et al. Dlk1 gene expression different tissues of lamb. Lranian J Appl Animal Sci. 2020;10(4):669–677.
  • Miller R. Drivers of consumer liking for beef, pork, and lamb: a review. Foods. 2020;9(4):428.
  • Mohamadipoor Saadatabadi L, Mohammadabadi M, Amiri Ghanatsaman Z, et al. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet Res. 2021;17(1):369.
  • Jafari Ahmadabadi SAA, Askari-Hemmat H, Mohammadabadi M, Asadi Fouzi M, Mansouri M. The effect of Cannabis seed on DLK1 gene expression in heart tissue of Kermani lambs. Agricult Biotechnol J. 2023;15:217–234.
  • Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. J Clin Med. 2018;7(9):258.
  • Villarroya F, Giralt M, Iglesias R. Retinoids and adipose tissues: metabolism, cell differentiation and gene expression. Int J Obes Relat Metab Disord. 1999;23(1):1–6.
  • Jo YH, Peng DQ, Kim WS, et al. The effects of vitamin A supplementation during late-stage pregnancy on longissimus dorsi muscle tissue development, birth traits, and growth performance in postnatal Korean native calves. Asian-Australas J Anim Sci. 2020;33(5):742–752.
  • Wang B, Nie W, Fu X, et al. Neonatal vitamin A injection promotes cattle muscle growth and increases oxidative muscle fibers. J Animal Sci Biotechnol. 2018;9(1):82.
  • Song P, Chen X, Zhao J, et al. Vitamin A injection at birth improves muscle growth in lambs. Anim Nutr. 2023;14:204–212.
  • Wang Y, Li L, Gou Z, et al. Effects of maternal and dietary vitamin A on growth performance, meat quality, antioxidant status, and immune function of offspring broilers. Poult Sci. 2020;99(8):3930–3940.
  • Langel SN, Paim FC, Alhamo MA, Lager KM, Vlasova AN, Saif LJ. Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets. Vet Res. 2019;50(1):101.
  • Zhou HB, Huang XY, Bi Z, et al. Vitamin A with L-ascorbic acid sodium salt improves the growth performance, immune function and antioxidant capacity of weaned pigs. Animal. 2021;15(2):100133.
  • Clark A, Kyriazakis I, Giles T, Foster N, Lietz G. The influence of vitamin a on molecular bio-mineral tissue development in pigs (P02-012-19). Curr Dev Nutr. 2019;3:nzz029.P02-012-19.
  • de Jonge EA, Kiefte-de Jong JC, Campos-Obando N, et al. Dietary vitamin A intake and bone health in the elderly: the Rotterdam Study. Eur J Clin Nutr. 2015;69(12):1360–1368.
  • Kruk ZA, Bottema MJ, Reyes-Veliz L, Forder REA, Pitchford WS, Bottema CDK. Vitamin A and marbling attributes: Intramuscular fat hyperplasia effects in cattle. Meat Sci. 2018;137:139–146.
  • Chattha KS, Kandasamy S, Vlasova AN, Saif LJ. Vitamin A deficiency impairs adaptive B and T cell responses to a prototype monovalent attenuated human rotavirus vaccine and virulent human rotavirus challenge in a gnotobiotic piglet model. PLoS One. 2013;8(12):e82966.
  • Wang WJ, Wang SP, Gong YS, Wang JQ, Tan ZL. Effects of vitamin A supplementation on growth performance, carcass characteristics and meat quality in Limosin × Luxi crossbreed steers fed a wheat straw-based diet. Meat Sci. 2007;77(4):450–458.
  • Reiner BHG, Köhler K. Vitamin-A-Intoxikation beim Schwein. Tierrztliche Praxis G Grotiere/nutztiere. 2004;32:218–224.
  • Ayuso AFM, Isabel B, Rey R, et al. Long term vitamin A restriction improves meat quality parameters and modifies gene expression in Iberian pigs. JAnim Sci. 2015;93(6):2730–2744.
  • Reijntjes S, Francis-West P, Mankoo BS. Retinoic acid is both necessary for and inhibits myogenic commitment and differentiation in the chick limb. Int J Dev Biol. 2010;54(1):125–134.
  • Momoi T, Miyagawa-Tomita S, Nakamura S, Kimura I, Momoi M. Retinoic acid ambivalently regulates the expression of MyoD1 in the myogenic cells in the limb buds of the early developmental stages. Biochem Biophys Res Commun. 1992;187(1):245–253.
  • Ayuso AFM, Isabel B, Rey A, et al. Retinoic acid induces adult muscle cell differentiation mediated by the retinoic acid receptor-alpha. J Cell Physiol. 1993;154:566–572.
  • Ryan T, Liu J, Chu A, Wang L, Blais A, Skerjanc IS. Retinoic acid enhances skeletal myogenesis in human embryonic stem cells by expanding the premyogenic progenitor population. Stem Cell Rev Rep. 2012;8(2):482–493.
  • Zhang H, Wang S, Zhou Q, et al. Disturbance of calcium homeostasis and myogenesis caused by TET2 deletion in muscle stem cells. Cell Death Discov. 2022;8(1):236 10.1038/s41420-022-01041-1. PMC: 35490157
  • Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol. 2022;23(3):204–226.
  • di Masi A, Leboffe L, De Marinis E, et al. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med. 2015;41:1–115.
  • Germain P, Gaudon C, Pogenberg V, et al. Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists. Chem Biol. 2009;16(5):479–489.
  • Bergstrom DA, Penn BH, Strand A, Perry RL, Rudnicki MA, Tapscott SJ. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell. 2002;9(3):587–600.
  • Yee SP, Rigby PW. The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev. 1993;7(7A):1277–1289.
  • Liang L, Wang X, Zheng Y, Liu Y. All‑trans‑retinoic acid modulates TGF‑β‑induced apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling. Mol Med Rep. 2019;20:2929–2935.
  • Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998;12(4):502–513.
  • Musa J, Orth MF, Dallmayer M, et al. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene. 2016;35(36):4675–4688.
  • Yin B, Ren H, Cai Hao, Jiang Y, Zhao S, Wang H. Dynamics of cardiomyocyte and muscle stem cell proliferation in pig. Exp Cell Res. 2020;388(2):111854 doi: 10.1016/j.yexcr.2020.111854. PMC: 31954694
  • Berry DC, Noy N. Signaling by vitamin A and retinol-binding protein in regulation of insulin responses and lipid homeostasis. Biochim Biophys Acta. 2012;1821(1):168–176.
  • Sauvant P, Cansell M, Atgié C. Vitamin A and lipid metabolism: relationship between hepatic stellate cells (HSCs) and adipocytes. J Physiol Biochem. 2011;67(3):487–496.
  • Hamade A, Deries M, Begemann G, et al. Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev Biol. 2006;289(1):127–140.
  • Lamarche É, Lala-Tabbert N, Gunanayagam A, St-Louis C, Wiper-Bergeron N. Retinoic acid promotes myogenesis in myoblasts by antagonizing transforming growth factor-beta signaling via C/EBPβ. Skelet Muscle. 2015;5(1):8.
  • Li Q, Zhang T, Zhang R, Qin X, Zhao J. All-trans retinoic acid regulates sheep primary myoblast proliferation and differentiation in vitro. Domest Anim Endocrinol. 2020;71:106394.
  • Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Lett. 2003;197(1-2):185–192.
  • Sidell N, Altman A, Haussler MR, Seeger RC. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp Cell Res. 1983;148(1):21–30.
  • El Haddad M, Notarnicola C, Evano B, et al. Retinoic acid maintains human skeletal muscle progenitor cells in an immature state. Cell Mol Life Sci. 2017;74(10):1923–1936.
  • Luo W, Xu Y, Liu R, et al. Retinoic acid and RARγ maintain satellite cell quiescence through regulation of translation initiation. Cell Death Dis. 2022;13(9):838.
  • Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol. 1999;210(2):440–455.
  • Ren R, Fan Yu, Peng Z, et al. Characterization and perturbation of CTCF-mediated chromatin interactions for enhancing myogenic transdifferentiation. Cell Rep. 2022;40(7):111206.doi: 10.1016/j.celrep.2022.111206. PMC: 35977522
  • Hausburg MA, Doles JD, Clement SL, et al. Post-transcriptional regulation of satellite cell ­quiescence by TTP-mediated mRNA decay. Elife. 2015;4:e03390.
  • de Morrée A, van Velthoven CTJ, Gan Q, et al. Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A. 2017;114(43):E8996–e9005.
  • Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol. 1999;144(4):631–643.
  • Wang S, Liao Y, Zhang H, et al. Tcf12 is required to sustain myogenic genes synergism with MyoD by remodelling the chromatin landscape. Commun Biol. 2022;5(1):1201. doi: 10.1038/s42003-022-04176-0. PMC: 36352000
  • Venuti JM, Morris JH, Vivian JL, Olson EN, Klein WH. Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol. 1995;128(4):563–576.
  • Hosoyama T, Iida H, Kawai-Takaishi M, Watanabe K. Vitamin D Inhibits Myogenic Cell Fusion and Expression of Fusogenic Genes. Nutrients. 2020;12(8):2192.
  • Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6(1):25–39.
  • Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). 2006;21:362–369.
  • Battaglioni S, Benjamin D, Wälchli M, Maier T, Hall MN. mTOR substrate phosphorylation in growth control. Cell. 2022;185(11):1814–1836.
  • Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–868.
  • Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412.