150
Views
3
CrossRef citations to date
0
Altmetric
Articles

Optimal Immobilization of Acidic Proteases from Monterey Sardine (Sardinops sagax caeurelea) on Partially Deacetylated Chitin from Shrimp Head Waste

, , , , , , , , & show all

References

  • Altun, G. D. and Cetinus, S. A. 2007. Immobilization of pepsin on chitosan beads. Food Chem. 100: 964–971.
  • Amaral, I. P., Carneiro-da-Cunha, M. G., Carvalho, L. B., Jr., and Bezerra, R. S. 2006. Fish trypsin immobilized on ferromagnetic Dacron. Process Biochem. 41: 1213–1216.
  • Arvanitoyannis, I. S., and Kassaveti, A. 2008. Fish industry waste: Treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Tech. 43: 726–745.
  • Aryee, A. N., and Simpson, B. K. 2012. Immobilization of lipase from grey mullet. Appl. Biochem. Biotech. 168: 2105–2122.
  • Baş, D., and Boyacı, İ. H. 2007. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78: 836–845.
  • Bautista-Baños, S., Hernández-Lauzardo, A., Velázquez-del Valle, M., Hernández-López, M., Ait Barka, E., Bosquez-Molina, E., and Wilson, C. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 25: 108–118.
  • Beaney, P., Lizardi-Mendoza, J., and Healy, M. 2005. Comparison of chitins produced by chemical and bioprocessing methods. J. Chem. Technol. Biot. 80: 145–150.
  • Box, G., Hunter, W., and Hunter, J. 1978. Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building. New York, NY: John Wiley and Sons.
  • Brady, D., and Jordaan, J. 2009. Advances in enzyme immobilisation. Biotechnol. Lett. 31: 1639–1650.
  • Brugnerotto, J., Lizardi, J., Goycoolea, F., Argüelles-Monal, W., Desbrieres, J., and Rinaudo, M. 2001. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 42: 3569–3580.
  • Castillo-Yañez, F. J., Pacheco-Aguilar, R., Garcia-Carreño, F. L., and Navarrete del Toro, M. A. (2004). Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem. 85: 343–350.
  • Dı́az-López, M., Moyano-López, F. J., Alarcón-López, F. J., Garcı́a-Carreño, F. L., and Navarrete del Toro, M. 1998. Characterization of fish acid proteases by substrate–gel electrophoresis. Comp. Biochem. Phys. B 121: 369–377.
  • Díaz-Rojas, E. I., Argüelles-Monal, W. M., Higuera-Ciapara, I., Hernández, J., Lizardi-Mendoza, J., and Goycoolea, F. M. 2006. Determination of chitin and protein contents during the isolation of chitin from shrimp waste. Macromol. Biosci. 6: 340–347.
  • Dumay, J., Donnay-Moreno, C., Barnathan, G., Jaouen, P., and Berge, J.-P. 2006. Improvement of lipid and phospholipid recoveries from sardine (Sardina pilchardus) viscera using industrial proteases. Process Biochem. 41: 2327–2332.
  • Dwevedi, A., and Kayastha, A. M. 2009a. Stabilization of β-galactosidase (from peas) by immobilization onto Amberlite MB-150 beads and its application in lactose hydrolysis. J. Agr. Food Chem. 57: 682–688.
  • Dwevedi, A., and Kayastha, A. M. 2009b. Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresource Technol. 100: 2667–2675.
  • Elvevoll, E. 2004. Fish waste and functional foods. In: Total Food: Exploiting Co-Products—Minimizing Waste. Waldron, K., Fauldsand, C., and Smith, A. (Eds.). Norwich, UK: Institute of Food Research. Pp. 49–57.
  • Ferraro, V., Carvalho, A. P., Piccirillo, C., Santos, M. M., Castro, P. M., and Pintado, M. E. 2013. Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues—A review. Mat. Sci. Eng. C 33: 3111–3120.
  • Gutiérrez Pulido, H., and de la Vara Salazar, R. 2004. Análisis y Diseño de Experimentos. Mexico DF, Mexico: McGraw-Hill.
  • Helrich, K. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists (Vol. 2). Arlington, VA: Author.
  • Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P., Nair, S., and Tamura, H. 2011. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 29: 322–337.
  • Kılınç, D. A., Teke, M., Önal, S., and Telefoncu, A. 2006. Immobilization of pancreatic lipase on chitin and chitosan. Prep. Biochem. Biotech. 36: 153–163.
  • Krajewska, B. 2004. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Tech. 35: 126–139.
  • Kumar, S., Dwevedi, A., and Kayastha, A. M. 2009. Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: Analytical applications. J. Mol. Catal. B-Enzym. 58: 138–145.
  • Kumari, A., and Kayastha, A. M. 2011. Immobilization of soybean (Glycine max) α-amylase onto Chitosan and Amberlite MB-150 beads: Optimization and characterization. J. Mol. Catal. B-Enzym. 69: 8–14.
  • Kurtovic, I., Marshall, S. N., and Zhao, X. 2011. Hydrophobic immobilization of a bile salt activated lipase from Chinook salmon (Oncorhynchus tshawytscha). J. Mol. Catal. B-Enzym. 72: 168–174.
  • Li, D., Matos, M., and Simpson, B. K. 2013. Inactivation of pectin methylesterase by immobilized trypsins from cunner fish and bovine pancreas. Biotechnol. Appl. Bioc. 60: 244–252.
  • Mazik, K., and Burdon, D. 2005. Seafood-Waste Disposal at Sea—A Scientific Review ( Report YBB088). Hull, UK: The University of Hull, Institute of Estuarine & Coastal Studies (IECS).
  • Potumarthi, R., Subhakar, C., Pavani, A., and Jetty, A. 2008. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods. Bioresource Technol. 99: 1776–1786.
  • Romdhane, I. B.-B., Romdhane, Z. B., Gargouri, A., and Belghith, H. 2011. Esterification activity and stability of Talaromyces thermophilus lipase immobilized onto chitosan. J. Mol. Catal. B-Enzym. 68: 230–239.
  • Safari, R., Nasrollahzadeh Saravi, H., Pourgholam, R., Motalebi, A. A., and Ghoroghi, A. 2011. Use of hydrolysates from silver carp (Hypophthalmichthys molitrix) head as peptone for Vibrio anguillarum and optimization using response surface method (RSM). J. Aquat. Food Prod. T. 20: 247–257.
  • Salazar-Leyva, J. A., Lizardi-Mendoza, J., Ramirez-Suarez, J. C., Valenzuela-Soto, E. M., Ezquerra-Brauer, J. M., Castillo-Yañez, F. J., and Pacheco-Aguilar, R. 2013. Acidic proteases from Monterey sardine (Sardinops sagax caerulea) immobilized on shrimp waste chitin and chitosan supports: Searching for a by-product catalytic system. Appl. Biochem. Biotech. 171: 795–805.
  • Sangeetha, K., and Abraham, T. 2008. Investigation on the development of sturdy bioactive hydrogel beads. J. Appl. Polym. Sci. 107: 2899–2908.
  • Sila, A., Nasri, R., Bougatef, A., and Nasri, M. 2012. Digestive alkaline proteases from the goby (Zosterisessor ophiocephalus): Characterization and potential application as detergent additive and in the deproteinization of shrimp wastes. J. Aquat. Food Prod. T. 21: 118–133.
  • Singh, A. N., Suthar, N., Singh, S., and Dubey, V. K. 2011. Glutaraldehyde activated chitosan matrix for immobilization of a novel cysteine protease, procerain B. J. Agr. Food Chem. 59: 6256–6262.
  • Tharanathan, R., and Kittur, F. 2003. Chitin—The undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 43: 61–87.
  • Tripathi, P., Kumari, A., Rath, P., and Kayastha, A. M. 2007. Immobilization of α-amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: A comparative study. J. Mol. Catal. B-Enzym. 49: 69–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.