226
Views
2
CrossRef citations to date
0
Altmetric
Articles

Biological Silages from Tunisian Shrimp and Octopus By-Products

, , , &

References

  • AFNOR. 2001. Viandes, produits à base de viandes et produits de la pêche. Saint Denis, France: Afnor.
  • Anonymous. 2013. Statistical Yearbook of Fisheries and Aquaculture in Tunisia. Tunisia: GDFA.
  • AOAC. 2000. Official Methods of Analysis, 17th ed. Washington DC, USA: Association of Official Analytical Chemists.
  • Bautista, J., Jover, M., Gutierrez, J.F., Corpas, R., Cremades, O., Fontiveros, E., Iglesias, F., Vega, J. 2001. Preparation of crayfish chitin by in situ lactic acid production. Process Biochem. 37: 229–234.
  • Bhaskar, N., Suresh, P. V., Sakhare, P. Z., and Sachindra, N. M. 2007. Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzyme Microb. Technol. 40: 1427–1434.
  • Bover-Cid, S., Izquierdo-Pulido, M., and Vidal-Carou, M. C. 2001. Changes in biogenic amine and polyamine contents in slightly fermented sausages manufactured with and without sugar. Meat Sci. 57: 215–221.
  • Buttkus, H., and Bose, R. J. 1972. Amine-Malonaldehyde condensation products and their relative color contribution in the thiobarbituric acid test. J. Am. Oil Chem. Soc. 49: 440–443.
  • Cira, L. A., Huerta, S., Hall, G. M., and Shirai, K. 2002. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem. 37: 1359–1366.
  • Cissé, A., Luquet, P., and Etchian, A. 1995. Utilisation par Chrysichthys nigrodigitatus (Bagridae) d’ensilage chimique ou biologique de poisson. Aquac. Living Resour. 8: 373–377.
  • Dapkevicius, M. L. N. E., Nout, M. J. R., Rombouts, F. M., Houben, J. H., and Wymenga, W. 2000. Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int. J. Food Microbiol. 57: 107–114.
  • Duflos, G., Dervin, C., Malle, P. and Bouquelet, S. 1999. Use of biogenic amines to evaluate spoilage inplaice (Pleuronectes platessa) and whiting (Merlangus merlangus). J.-AOAC Int. 82: 1357–1363.
  • Edin, H. 1940. Unders â kingar angåande importa vsteningers ä ggviteproblem. Nord. Jordbr. Forsk. 22/42.
  • Emborg, J., Laursen, B.G., Rathjen, T., and Dalgaard, P. 2002. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2°C. J. Appl. Microbiol. 92: 790–799.
  • Ennouali, M., Elmoualdi, L., Labioui, H., Ouhsine, M., and Elyachioui M. 2006. Biotransformation of the fish waste by fermentation. Afr. J. Biotechnol. 5: 1733–1737.
  • Espe, M., and Lied, E. 1999. Fish silage prepared from different cooked and uncooked raw materials: Chemical changes during storage at different temperatures. J. Sci. Food Agric. 79: 327–332.
  • Fagbenro, O. A., and Jauncey, K. 1998. Physical and nutritional properties of moist fermented fish silage pellets as a protein supplement for tilapia (Oreochromis niloticus). Ani. Feed Sci.Technol. 71: 11–18.
  • Faid, M., Zouiten, A., Elmarrakchi, A., and Achkari-Begdouri, A. 1997. Biotransformation of fish waste into a stable feed ingredient. Food Chem. 60: 13–18.
  • Faid, M., Karani, H., Elmarrakchi, A., and Achkari-Begdouri, A. 1994. A biotechnological process for the valorization of fish waste. Bioressour. Technol. 49: 237–241.
  • Folch, J., Lees, M., and Stanley, G. H. S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509.
  • Goddard, J. S., and Perret, J. S. M. 2005. Co-drying fish silage for use in aquafeeds. Anim. Feed Sci. Technol. 118: 337–342.
  • Green, S., Wiseman, J., and Cole, D. J. A. 1988. Examination of stability, and its effect on the nutritive value, of fish silage in diets for growing pigs. Anim. Feed Sci. Technol. 21: 43–56.
  • Green, S., Wiseman, J., and Cole, D. J. A. 1983. Fish silage in pig diets. Pig News. Infor. 4: 269–273.
  • Gutiérrez, H., and De La Vara, R. 2003. Analysis and Design of Experiments, 1st ed. Mexico: D.F. McGraw-Hill Inter-American
  • Halasz, A., Barath, A., Simon-Sarkadi, L., and Holzapfel, W. 1994. Biogenic-amines and their production by microorganisms in food. Trends Food Sci. Technol. 5: 42–49.
  • Hall, G. M., and De Silva, L. L. S. S. K. 1992. Lactic acid fermentation of shrimp (Peneaus monodon) waste for chitin recovery. In: Advances in Chitin and Chitosan. Brine, C. J., Sandford, P. A., and Zikakis, J. P. (Eds.). London: Elsevier Applied Science. Pp. 633–638.
  • Hall, G. M., and De Silva, L. L. S. S. K. 1994. Shrimp by-product ensilation. INFOFISH Inter. 2: 27–30.
  • Hall, G. M., Mescle, J. P., and Han-Ching, L. 1995. Application of lactic acid fermentation to the preservation of fish and fish products. Final report for publication, FAR Project UP-2-514.
  • Hassan, T. E., and Health, J. L. 1986. Biological fermentation of fish waste for potential use in animal and poultry feeds. Agric. Waste. 15: 1–15.
  • Healy, M., No. H. K., and Meyers, S. P. 2003. Preparation and characterization of chitin and Chitosan. J. Aquatic Food Prod. Technol. 4: 27–52.
  • Hu, K. J., and Leung, P. C. 2007. Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 146: 69–80.
  • Kim, S., and Mendis, E. 2006. Bioactive compounds from marine processing byproducts: a review. Food Res. Int. 39: 383–393.
  • Kjeldahl, J. 1883. A new method for the determination of nitrogen in organic matter. Sci. Am. 16: 6470–6470.
  • Komprda, T., Neznalova, J., Standara, S., and Bover-Cid, S. 2001. Effect of starter culture and storage temperature on the content of biogenic amines in polian dry fermented sausage. Meat Sci. 59: 267–276.
  • Laufenberg, G., Kunz, B., and Nystroem, M. 2003. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 87: 167–198.
  • Le Bihan, E. 2006. Valorisation des co-produits issus de la pêche des céphalopodes: application à la seiche: Sepia officinalis. Thèse de Doctorat, spécialité: Sciences Agronomiques, Biotechnologies Alimentaires. Université de Caen. 285 p.
  • Lehnert, S. A., and Johnson. S. E. 2002. Expression of haemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the Black Tiger Shrimp Peneaus monodon. Comp. Biochem. Physiol. B. 133: 163–171.
  • Leroi, F. 2010. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol: 27: 698–709.
  • Li, E., Chen, L., Zeng, C., Yu, N., Xiong, Z., Chen, X., and Qin, J. G. 2008. Comparison of digestive and antioxidant enzymes activities, haemolymphoxyhemocya-nin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquacult. 274: 80–86.
  • Lima, A. S., and Gloria, M. B. A. 1999. Bioactive amines in food. Bull. Braz. Soc. Food Sci. Technol. 33: 70–79.
  • Lo, K. V., Liao, P. H., Bullock, C., and Jones, Y.1993. Silage production from salmon farm mortalities. Aquacult. Eng. 12: 37–45.
  • Mach, D. T. N., and Nortvedt, R. 2009. Chemical and nutritional quality of silage made from raw or cooked fish and crab. J. Sci. Food Agric. 89: 2519–2526.
  • Mah, J. H., and Hwang, H. J. 2009. Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Contr. 20: 796–801.
  • Mahouachi, M., Haddad, L., Kayouli, C., Théwis, A., and Beckers, Y. 2003. Effects of the nature of nitrogen supplementation on voluntary intake, rumen parameters and ruminal degradation of dry matter in sheep fed oat silage-based diets. Small Ruminant Res. 48: 181–187.
  • Javeed, A., and Mahendrakar, N. S. 1995. Effect of different levels of molasses and salt on acid production and volume of fermenting mass during ensiling of tropical freshwater fish viscera. J. Food Sci. Technol. Mysore. 32: 115–118.
  • Maijala, R., Eerola, S., Lievonen, S., Hill, P., and Hirvi, T. 1995a. Formation of biogenic amines during ripening of dry sausages as affected by starter culture and thawing time of raw materials. J. Food Sci. 60: 1187–1190.
  • Maijala, R., Nurmi, E., and Fischer, A. 1995b. Influence of processing temperature on the formation of biogenic amines in dry sausages. Meat Sci. 39: 9–22.
  • Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., Gonzalez, J. M. D., Converti, A. and Oliveira, R. P. S. 2013. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 30: 70–83.
  • Monique, M., Daniela, G., Lucrezia, G., Maria Gabriella, D., and Gabriella, C. 2014. Study of digestive enzymes in wild specimens of Sepia officinalis (Linnaeus, 1758) and Octopus vulgaris (Cuvier, 1797). Cah. Biol. Mar. 55: 445–452.
  • Mousavi, S. L., Mohammadi, G., Khodadadi, M., and Keysami, M. A. 2013. Silage production from fish waste in cannery factories of Bushehr city using mineral acid, organic acid, and biological method. Inter. J. Agri. Crop Sci. 6: 610–616.
  • Muhamad, N. A., and Mohamad, J. 2012. Fatty acids composition of selected Malaysian fishes. Malaysian Sci. 41: 81–94.
  • Munilla-Moran, R., and Stark, J. R. 1989. Protein digestion in early turbot larvae, Scophthalmus maximus (L.). Aquaculture 81: 315–327.
  • Murphy, P. T., Moore, K. J., Richard, T. L., and Bern, C. J. 2007. Enzyme enhanced solid-state fermentation of kenaf core fiber for storage and pretreatment. Bioresour. Technol. 98: 3106–3111.
  • Naila, A., Flint, S., Fletcher, G., Bremer, P., and Meerdink, G. 2010. Control of Biogenic Amines in Food—Existing and Emerging Approaches. J. Food Sci. 75: 139–150.
  • Nout, M.J.R. 1994. Fermented foods and food safety. Food Res. Int. 27: 291–298.
  • Oliveira-Cavalheiro, J. M., Oliveira de Souza, E., and Bora, P. S. 2007. Utilization of shrimp industry waste in the formulation of tilapia (Oreochromis niloticus Linnaeus) feed. Bioresour. Technol. 98: 602–606.
  • Ottati. M., Gutierrez, M., and Bello, R. 1990. Study on the development of microbial silage from fish from underutilized species. Lat. Am. Nutr. Soc. 40: 409–410.
  • Park, J. N., Fukumoto, Y., Fujita, E., Tanaka, T., Washio, T., Otsuka, S., Shimizu, T., Watanabe, K., and Abe, H. 2001. Chemical composition of fish sauce produced in southeast and East Asian countries. J. Food Comp. Anal. 14: 113–125.
  • Pegg, R. B., Shahidi, F., and Jablonski, C. R. 1992. Interaction of sulfanilamide and 2-thiobarbutiric acid with malonaldehyde: structure of adducts and implications in determination of oxidative state of nitrite-cured meats. J. Agric. Food Chem. 40: 1826–1832.
  • Raa, J., and Gildberg, A. 1982. Fish silage: A review. Critical Reviews in Food Sci. Nutri. 16: 383–419.
  • Raghunath, M. R., and McCurdy, A. R. 1987. Autolysis-resistant sediment in fish silage. Agri. Wastes. 20: 227–239.
  • Rao, M., and Stevens, W. 2006. Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. J. Food Technol. Biotechnol. 44: 83–87.
  • Rao, M. S., Munoz, J., and Stevens, W. F. 2000. Critical factors in chitin production by fermentation of shrimp biowaste. Appl. Microbial Biotechnol. 54: 808–813.
  • Rivas, B., Gonzalez, R., Landete, J. M., and Munoz, R. 2008. Characterization of a second ornithine decarboxylase isolated from Morganella morganii. J. Food Prot. 71: 657–661.
  • Roberts, C. A. 1995. Microbiology of stored forages. In: Post-Harvest Physiology and Preservation of Forages: Proceedings of a Symposium Sponsored by C-6 of the Crop Science Society of America. Moore, K. J., and Peterson, M. A., (Eds.). Madison, WI: Crop Science Society of America. Pp. 21–38.
  • Sachindra, N. M., Bhaskar, N., Siddegowda, G. S., Sathisha, A. D., and Suresh, P. V. 2007. Recovery of carotenoids from ensilaged shrimp waste. Bioresour. Technol. 98: 1642–1646.
  • Salih, A. M., Smith, D. M., Price, J. F., and Dawson, L. E. 1987. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 66: 1483–1488.
  • Santana-Delgado, H., Avila, E., and Sotelo, A. 2008. Preparation of fish silage of Spanish mackerel (Scomberomorus maculates) and its evaluation in broiler diets. Anim Feed Sci Technol. 141: 129–140.
  • Santos, M. H. S. 1996. Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29: 213–231.
  • Schormüller, J. 1969. Handbook of Food Chemistry. Volume IV. Fats and Lipids (LIPIDS), New York, Heidelberg, Berlin: Springer.
  • Shirai, K., Guerrero, I., Huerta, S., Saucedo, G., Castillo, A., Gonzalez, R. O., and Hall, G. M. 2001. Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme Microb. Technol. 28: 446–452.
  • Tatterson, I. N., and Windsor, M. L. 1974. Fish silage. Aberdeen, Scotland: Torry Research Station, Ministry of Agriculture, Fisheries and Food.
  • Tatterson, I. N. 1982. Fish silage - preparation, properties and uses. Anim. Feed Sci. Technol. 7: 153–159.
  • Til, H. P., Falke, H. E., Prinsen, M. K., and Willems, M. I. 1997. Acute and sub-acute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem. Toxicol. 35: 337–348.
  • Torrissen, O., Tidemann, E., Hansen, F., and Raa, J. 1981/ 1982. Ensiling in acid. A method to stabilize astaxanthin in shrimp processing by-products and improve uptake of this pigment by rainbow trout (Salmo gairdneri). Aquaculture 26: 77–83.
  • Torrissen, O. J., Hardy, R. W., and Shearer, K. D. 1989. Pigmentation of salmonids - Carotenoid deposition and metabolism. CRC Crit. Rev. Aquat. Sci. 1: 209–225.
  • Vidotti, R. M., Viegas, E. M. M., and Carneiro, D. J. 2003. Amino acid composition of processed fish silage using different raw materials. Ani. Feed Sci. Technol. 105: 199–204.
  • Villasante-Vega, F., Nolasco, H., and Civera, R. 1995. The digestive enzymes of the Pacific brown shrimp Penaeus californiensis. II. Properties of protease activity in the whole digestive tract. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 112B: 123–129.
  • Vyncke, W. 1975. Evaluation of the direct thiobarbituric acid extraction method for determining oxidative rancidity in mackerel (Scomber scombrus L.). Eur. J. Lipid Sci. Technol. 77: 239–240.
  • Welinder, B.S. 1974. The crustacean cuticle. I. Studies on the composition of the cuticle. Comp. Biochem. Physiol. 47 A: 779–787.
  • Wood, J. E., Capper, B. S., and Nicolaidens, L. 1985. Preparation and evaluation of diets containing silage, cooked fish preserved with formic acid and low-temperature-dried fish meal as protein sources for mirror carp (Cyprinus carpius). Aquaculture. 44: 27–40.
  • Xu, Y., Gallert, C., and Winter, J. 2008. Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl. Microbiol. Biotechnol. 79: 687–697.
  • Zakaria, Z., Hall, G. M., and Shama, G. 1998. Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery. Process Biochem. 33: 1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.