421
Views
2
CrossRef citations to date
0
Altmetric
Articles

Silver Carp Bone Powder as Natural Calcium for Fish Sausage

, , , &

References

  • Admassu, W., and Breese, T. 1999. Feasibility of using natural fishbone apatite as a substitute for hydroxyapatite in remediating aqueous heavy metals. J. Hazard. Mater. 69: 187–196.
  • Ashraf, M., Zafar, A., Rauf, A., Mehboob, S., and Qureshi, N. A. 2011. Nutritional values of wild and cultivated silver carp (Hypophthalmichthys molitrix) and grass carp (Ctenopharyngodon idella). Int. J. Agric. Biol. 13: 210–214.
  • Boutinguiza, M., Pou, J., Comesana, R., Lusquinos, F., De Carlos, A., and Leon, B. 2012. Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. 32: 478–486.
  • Chin, K. B., JKeeton, J. T., Longnecker, M. T., and Lamkey, J. W. 1999. Utilization of soy protein isolate and konjac blends in a low-fat bologna (Model system). Meat Sci. 53: 45–57.
  • Coman, V., Grecu, R., Baciut, M., Baciut, G., Prodan, P., and Simon, V. 2007. Investigation of different bone matrices by vibrational spectroscopy. J. Optoelectron. Adv. M. 9(11): 3372–3375.
  • Folk, J. E. 1980. Transglutaminase. Annu. Rev. Biochem. 49: 517–531.
  • Hellmich, C., and Ulm, F. J. 2002. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? – some energy arguments. J. Biomech. 35: 1199–1212
  • Hemung, B. 2013. Properties of tilapia bone powder and its calcium bioavailability based on transglutaminase assay. Int. J. Biosci. Biochem. Bioinf (IJBBB). 3(4): 306–309.
  • Hemung, B., and Yongsawatdigul, J. 2005. Ca2+ affects physicochemical and conformational changes of threadfin bream myosin and actin in a setting model. J. Food Sci. 70(8): 455–460.
  • Hemung, B., and Sriuttha, M. 2014. Effects of tilapia bone calcium on qualities of tilapia sausage. Kasetsart J. – Nat. Sci. 48: 790–798.
  • Institute of Medicine. 2003. Dietary Reference Intake: Application in Dietary Planning. Washington DC: National Academies Press. Pp. 52.
  • Lee, N., and Park, J. W. 1998. Calcium compounds improve gel functionality of Pacific whiting and Alaska Pollock surimi. J. Food Sci. 63: 969–974.
  • Liu, H., Yin, L., Zhang, N., Li, S., and Ma, C. 2008. Isolation of cathepsin B from the muscle of silver carp (Hypophthalmichthys molitrix) and comparison of cathepsins B and L actions on surimi gel softening. Food Chem. 110: 310–318.
  • Malde, M., Bugel, S., Kristensen, M., Malde, K., Graff, K., and Pedersen, J. 2010. Calcium from salmon and cod bone is well absorbed in young healthy men: a double-blinded randomized crossover design. Nutr. Metab. 7(1): 61–69.
  • Prabakaran, K., and Sajeswari, S. 2006. Development of hydroxyapatite from natural fish bone through heat treatment. Trends Biomater. Artif. Organs. 20: 20–23.
  • Prange, A., Chauvistré, R., Modrow, H., Hormes, J., Trüper, H. G., and Dahl, C. 2002. Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiol.(Reading, Engl.). 148: 267–276.
  • Ravel, B., and Newville, M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12: 537–541.
  • Shimosaka, C. 1998. Changes in chemical composition and crystalline structure in fish bone during cooking. J. Clin. Biochem. Nutr. 26: 173–182.
  • Sittikulwitit, S., Sirichakwal, P. P., Puwastien, P., Chawasit, V., and Sungpuag, P. 2004. In vitro bioavailability of calcium from chicken bone extract powder and its fortified products. J. Food Compos. Anal. 17: 321–329.
  • Techochatchawal, K., Therdthai, N., and Khotavivattana, S. 2009. Development of calcium supplement from the bone of Nile tilapia (Tilapia nilotica). As. J. Food Ag-Ind. 2: 539–546.
  • Tennyson, J. M., and Winlers, R. S. 2000. Fish and other marine products. In: Official Methods of Analysis of the Association of Official Analytical Chemists. Horwitz, W. (Ed.). Maryland: AOAC International. Pp. 8–12.
  • Toppe, J., Albrektsen, S., Hope, B., and Aksnes, A. 2007. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Physiol. B. Comp. Biochem. 146: 395–401.
  • Worratao, A., and Yongsawatdigul, J. 2005. Purification and characterization of transglutaminase from tropical tilapia (Oreochromis niloticus). Food Chem. 93: 651–658.
  • Wu, G., Zhang, M., Wanga, Y., Mothibe, K., and Chen, W. 2012. Production of silver carp bone powder using superfine grinding technology: suitable production parameters and its properties. J. Food Eng. 109: 730–735.
  • Yin, T., Du, H., Xhang, J., and Xiong, S. 2016. Preparation and characterization of ultrafine fish bone powder. J. Aquat Food Prod.T. 25(7): 1045–1055.
  • Yin, T., and Park, J. W. 2014. Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi. Food Chem. 150: 463–468.
  • Yin, T., Reed, Z. H., and Park, J. W. 2014. Gelling properties of surimi as affected by the particle size of fish bone. LWT-Food Sci. Tech. 58: 412–416.
  • Yongsawatdigul, J., and Sinsuwan, S. 2007. Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting. Food Hydrocolloid. 21: 359–367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.