105
Views
1
CrossRef citations to date
0
Altmetric
Articles

Common Kilka Hydrolysis: Investigation of Functional and In Vitro Antioxidant Properties of Hydrolysates Obtained by Kiwifruit and Ginger Proteases

, , &

References

  • Adler-Nissen, J. 1986. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27:1256–1262.
  • Alla, N. R., Pamidighantam, P. R., Akula, S., and Karakala, B. 2012. Functional properties and in vitro antioxidant activity of roe protein hydrolysates of channa striatus and labeo rohita. Food Chem. 135: 1479–84
  • Barros, R. M., and Xavier Malcata, F. 2004. A kinetic model for hydrolysis of whey proteins by cardosin A extracted from Cynara cardunculus. Food Chem. 88: 351–359.doi: 10.1016/j.foodchem.2004.01.046
  • Bekhit, A. A., Hopkins, D. L., Geesink, G., Bekhit, A. A., and Franks, P. 2014. Exogenous proteases for meat tenderization. Crit. Rev. Food Sci. Nutr. 54: 1012–1031.doi: 10.1080/10408398.2011.623247
  • Chi, C.-F., Wang, B., Deng, -Y.-Y., Wang, Y.-M., Deng, S.-G., and Ma, J.-Y. 2014. Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle. Food Res. Int. 55: 222–228.doi: 10.1016/j.foodres.2013.11.018
  • Elavarasan, K., Naveen Kumar, V., and Shamasundar, B. A. 2014. Antioxidant and functional properties of fish protein hydrolysates from fresh water carp (catla catla) as influenced by the nature of enzyme. J. Food Process. Preserv. 38: 1207–1214.doi: 10.1111/jfpp.12081
  • Erdmann, K., Cheung, B. W. Y., and Schröder, H. 2008. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19: 643–654.doi: 10.1016/j.jnutbio.2007.11.010
  • Fan, J., He, J., Zhuang, Y., and Sun, L. 2012. Purification and identification of antioxidant peptides from enzymatic hydrolysates of Tilapia (Oreochromis niloticus) frame protein. Molecules. 17: 12836–12850.doi: 10.3390/molecules171112836
  • Ha, M., Bekhit, Alaa El-Din, A. A. A., and Hopkins, D. L. 2012. Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chem. 134: 95–105.doi: 10.1016/j.foodchem.2012.02.071
  • Halim, N. R. A., Yusof., H. M., and Sarbon, N. M. 2016. Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci. Technol. 51: 24–33.doi: 10.1016/j.tifs.2016.02.007
  • Huang, X. W., Chen, L. J., Luo, Y. B., Guo, H. Y., and Ren, F. Z. 2011. Purification, characterization, and milk coagulating properties of ginger proteases. J. Dairy Sci. 94: 2259–2269.doi: 10.3168/jds.2010-4024
  • Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., and Sharma, A. 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 121: 178–184.doi: 10.1016/j.foodchem.2009.12.027
  • Ketnawa, S., and Liceaga, A. M. 2017. Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food Bio. process Technol. 10: 582–591.doi: 10.1007/s11947-016-1841-8
  • Khiari, Z., Rico, D., Martin-Diana, A. B., and Barry-Ryan, C. 2014. Structure elucidation of ACE-inhibitory and antithrombotic peptides isolated from mackerel skin gelatine hydrolysates. J Sci Food Agric. 94: 1663–1671.doi: 10.1002/jsfa.2014.94.issue-8
  • Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., and Shahidi, F. 2012. Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: antioxidant activity and its potential in model systems. Food Chem. 135: 1118–1126.doi: 10.1016/j.foodchem.2012.05.080
  • Klomklao, S., Benjakul, S., and Kishimura, H. 2013. Functional properties and antioxidative activity of protein hydrolysates from toothed ponyfish muscle treated with viscera extract from hybrid catfish. Int. J. Food Sci. Technol. 48: 1483–1489.doi: 10.1111/ijfs.2013.48.issue-7
  • Klompong, V., Benjakul, S., Kantachote, D., Hayes, K. D., and Shahidi, F. 2008. Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme. Int. J. Food Sci. Technol. 43: 1019–1026.doi: 10.1111/ifs.2008.43.issue-6
  • Klompong, V., Benjakul, S., Kantachote, D., and Shahidi, F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102: 1317–1327.doi: 10.1016/j.foodchem.2006.07.016
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–685.doi: 10.1038/227680a0
  • Li, X., Luo, Y., Shen, H., and You, J. 2012. Antioxidant activities and functional properties of grass carp (Ctenopharyngodon idellus) protein hydrolysates. J. Sci. Food Agric. 92: 292–298.doi: 10.1002/jsfa.v92.2
  • Liceaga-Gesualdo, A. M., and Li-Chan, E. C. Y. 1999. Functional properties of fish protein hydrolysate from herring (clupea harengus). J. Food sci. 64: 1000–1004.doi: 10.1111/jfds.1999.64.issue-6
  • Liu, Y., Li, X., Chen, Z., Yu, J., Wang, F., and Wang, J. 2014. Characterization of structural and functional properties of fish protein hydrolysates from surimi processing by-products. Food Chem. 151: 459–465.doi: 10.1016/j.foodchem.2013.11.089
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.
  • Morales-Medina, R., Tamm, F., Guadix, A. M., Guadix, E. M., and Drusch, S. 2016. Functional and antioxidant properties of hydrolysates of sardine (S. Pilchardus) and Horse Mackerel (T. Mediterraneus) for the Microencapsulation of Fish Oil by Spray-Drying. Food Chem. 194: 1208–1216.
  • Ovissipour, M., Rasco, B., Shiroodi, S. G., Modanlow, M., Gholami, S., and Nemati, M. 2013. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. J. Food. Sci. Agric. 93: 1718–1726.
  • Oyaizu, M. 1986. Studies on products of browning reaction–antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307–315.
  • Pacheco-Aguilar, R., Mazorra-Manzano, M. A., and Ramírez-Suárez, J. C. 2008. Functional properties of fish protein hydrolysates from Pacific whiting(Merluccius productus) muscle produced by a commercial protease. Food Chem. 109: 782–789.
  • Picot, L., Ravallec, R., Fouchereau-Péron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., Guérard, F., Chabeaud, A., Legal, Y., Alvarez, O. M., Bergé, J.-P., Piot, J.-M., Batista, I., Pires, C., Thorkelsson, G., Delannoy, C., Jakobsen, G., Johansson, I., and Bourseau, P. 2010. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Food Sci. Agric. 90: 1819–1826.
  • Pirestani, S., Sahari, M. A., Barzegar, M., and Nikoopour, H. 2010. Lipid, cholesterol and fatty acid profile of some commercially important fish species from south caspian sea. J. Food Biochem. 34: 886–895.
  • Puglisi, I., Petrone, G., and Lo Piero, A. R. 2014. A kiwi juice aqueous solution as coagulant of bovine milk and its potential in Mozzarella cheese manufacture. Food Bioprod. Process. 92: 67–72.
  • Rahulan, R., Dhar, K. S., Nampoothiri, K. M., and Pandey, A. 2012. Aminopeptidase from Streptomyces gedanensis as a useful tool for protein hydrolysate preparations with improved functional properties. J. Food Sci. 77: C791–7.
  • Shahidi, F., Han, X. Q., and Synowiecki, J. 1995. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 53: 285–293.
  • Thiansilakul, Y., Benjakul, S., and Shahidi, F. 2007. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. Food biochem. 31: 266-287.
  • Wouters, A. G., Rombouts, I., Fierens, E., Brijs, K., and Delcour, J. A. 2016. Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Compr. Rev. Food Sci. Food Saf. 15: 786–800.
  • Zhang, B., Sun, Q., Liu, H. J., Li, S. Z., and Jiang, Z. Q. 2017. Characterization of actinidin from Chinese kiwifruit cultivars and its applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. LWT-Food Sci. Technol. 78: 1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.