112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Viscera of Labeo rohita: A Potential Source of Trypsin for Industrial Application

&

References

  • Aissaoui, N., Abidi, F., Hardouin, J., Abdelkafi, Z., Marrakchi, N., Jouenne, T., and Marzouki, M. N. 2016. Two novel peptides with angiotensin I converting enzyme inhibitory and antioxidative activities from Scorpaena notata muscle protein hydrolysate. Biotechnol. Appl. Biochem. 64: 201–210. doi:10.1002/bab.1478.
  • Aissaoui, N., Marzouki, M. N., and Abidi, F. 2017. Purification and biochemical characterization of a novel intestinal protease from Scorpaena notate. Int. J. Food Prop. 20(sup. 2). 2151–2165.
  • Bechtel, P. J. 2003. Properties of different fish processing by-products from pollock, cod and salmon. J. Food Pro. Preserv. 27: 101–116. doi:10.1111/j.1745-4549.2003.tb00505.x.
  • Bhaskar, N., and Mahendrakar, N. S. 2008. Protein hydrolysate from visceral waste proteins of catla (Catla catla): optimization of hydrolysis conditions for a commercial neutral protease. Biores. Technol. 99: 4105–4111. doi:10.1016/j.biortech.2007.09.006.
  • Bougatef, A. 2013. Trypsins from fish processing waste: characteristics and biotechnological applications - comprehensive review. J. Clean. Prod. 57: 257–265. doi:10.1016/j.jclepro.2013.06.005.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Brewer, P., Helbig, N., and Haard, N. F. 1984. Atlantic cod pepsin. Characterization and use as a rennet substitute. Can. Inst. Food Sci. Technol. J. 17: 38–43. doi:10.1016/S0315-5463(84)72314-5.
  • Cano-Lopez, A., Simpson, B. K., and Haard, N. F. 1987. Extraction of carotenoprotein from shrimp processing wastes with the aid of trypsin from Atlantic cod. J. Food Sci. 52: 503–506. doi:10.1111/j.1365-2621.1987.tb06656.x.
  • Cao, M. J., Osatomi, K., Sujuki, M., Hara, K., Tachibana, K., and Ishihara, T. 2000. Purification and characterization of two anionic trypsins from the hepatopancreas of carp. Fish. Sci. 66: 1172–1179. doi:10.1046/j.1444-2906.2000.00185.x.
  • Castillo-Yáñez, F. J., Pacheco-Aguilar, R., García-Carreño, F. L., and Navarrete-Del Toro, M. A. 2005. Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp. Biochem. Physiol. 140B: 91–98. doi:10.1016/j.cbpc.2004.09.031.
  • Cohen, T., Gertler, A., and Birk, Y. 1981. Pancreatic proteolytic enzymes from carp (Cyprinus carpio): I. Purification and physical properties of trypsin, chymotrypsin, elastase and carboxipeptidase B. Comp. Biochem. Physiol. B. 69: 639–646. doi:10.1016/0305-0491(81)90364-3.
  • Englard, S., and Seifter, S. 1990. Precipitation techniques. In: Guides to Protein Purification: Methods in Enzymology. Duetscher, M. P. (Ed.). California, USA: Academic Press, INC. Pp. 285–300.
  • Erlanger, B. F., Kokowsky, N., and Cohen, W. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophy. 95: 271–278. doi:10.1016/0003-9861(61)90145-X.
  • Espósito, T. S., Amaral, I. P. G., Buarque, D. S., Oliveira, G. B., Carvalho, J. L. B., and Bezerra, R. S. 2009. Fish processing waste as a source of alkaline proteases for laundry detergent. Food Chem. 112: 125–130. doi:10.1016/j.foodchem.2008.05.049.
  • Espósito, T. S., Marcuschi, M., Amaral, I. P. G., Carvalho, L. B. J., and Bezerra, R. S. 2010. Trypsin from the processing waste of the Lane snapper (Lutjanus synagris) and its compatibility with oxidants, surfactants and commercial detergents. J. Agricult. Food Chem. 58: 6433–6439. doi:10.1021/jf100111e.
  • Food and Agricultrure Organization, FAO. 2006. The State of World Fisheries and Aquaculture. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Freitas-Júnior, A. C. V., Costa, H. M. S., Icimoto, M. Y., Hirata, I. Y., Marcondes, M., Carvalho, L. B. J., Oliveira, V., and Bezerra, R. S. 2012. Giant Amazonian fish pirarucu (Arapaima gigas): its viscera as a source of thermostable trypsin. Food Chem. 133: 1596–1602. doi:10.1016/j.foodchem.2012.02.056.
  • García-Carreño, F. L., and Haard, N. 1993. Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem. 17: 97–113. doi:10.1111/j.1745-4514.1993.tb00864.x.
  • Gumisiriza, R., Mshandete, A. M., Rubindamayugi, M. S. T., Kansiime, F., and Kivaisi, A. K. 2009. Enhancement of anaerobic digestion of Nile perch fish processing wastewater. Afri. J. Biotechnol. 8: 328–333.
  • Heu, M. S., Kim, H. R., Cho, D. M., Godber, J. S., and Pyeun, J. H. 1997. Purification and characterization of cathepsin L-like enzyme from the muscle of anchovy, Engraulis japonica. Comp. Biochem. Physiol.B. 118: 523–529. doi:10.1016/S0305-0491(97)00181-8.
  • Jellouli, K., Bougatef, A., Daassi, D., Barkia, A., and Nasri, M. 2009. New alkaline trypsin from intestine of grey triggerfish (Balistes capriscus) with high activity at low temperature: isolation and characterization. Food Chem. 116: 644–650. doi:10.1016/j.foodchem.2009.02.087.
  • Kanno, G., Yamaguchi, T., Kishimura, H., Yamaha, E., and Saeki, H. 2010. Purification and characteristics of trypsin from masu salmon (Oncorhynchus masou) cultured in freshwater. Fish Physiol. Biochem. 36: 637–645. doi:10.1007/s10695-009-9336-4.
  • Khaled, H. B., Jellouni, K., Souissi, N., Ghorbel, S., Barkia, A., and Nasri, M. 2011a. Purification and characterization of three trypsin isoforms from viscera of sardinelle (Sardinella aurita). Fish Physiol. Biochem. 37: 123–133. doi:10.1007/s10695-010-9424-5.
  • Khaled, H. B., Nasri, R., Bougatef, A., Ghorbel, S., and Nasri, M. 2011b. Low molecular weight serine protease from the viscera of sardinelle (Sardinella aurita) with collagenolytic activity: purification and characterization. Food Chem. 124: 788–794. doi:10.1016/j.foodchem.2010.06.096.
  • Khangembam, B. K., and Chakrabarti, R. 2015. Trypsin from the digestive system of carp Cirrhinus mrigala: purification, characterization and its potential application. Food Chem. 175: 386–394. doi:10.1016/j.foodchem.2014.11.140.
  • Khangembam, B. K., Sharma, Y. V. R. K., and Chakrabarti, R. 2012. Purification and characterization of trypsin from the digestive system of carp Catla calta (Hamilton). Int. Aquat. Res. 4: 9. doi:10.1186/2008-6970-4-9.
  • Khantaphant, S., and Benjakul, S. 2008. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comp. Biochem. Physiol. B. 151: 410–419. doi:10.1016/j.cbpb.2008.08.011.
  • Khantaphant, S., and Benjakul, S. 2010. Purification and characterisation of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chem. 120: 658–664. doi:10.1016/j.foodchem.2009.09.098.
  • Kishimura, H., Hayashi, K., Miyashita, Y., and Nonami, Y. 2006. Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chem. 97: 65–70. doi:10.1016/j.foodchem.2005.03.008.
  • Kishimura, H., Klomklao, S., Benjakul, S., and Chun, B. S. 2008. Characteristics of trypsin from the pyloric caeca of walleye pollock (Theragra chalcogramma). Food Chem. 106: 194–199. doi:10.1016/j.foodchem.2007.05.056.
  • Klomklao, S. 2008. Digestive proteinases from marine organisms and their applications. Songklanakarin J. Sci. Technol. 30: 37–46.
  • Klomklao, S., and Benjakul, S. 2018. Two trypsin isoforms from albacore tuna (Thunnus alalunga) liver: purification and physicochemical and biochemical characterization. Int. J. Biol. Macromol. 107B: 1864–1870. doi:10.1016/j.ijbiomac.2017.10.059.
  • Klomklao, S., Benjakul, S., and Visessanguan, W. 2004. Comparative studies on proteolytic activity of spleenic extract from three tuna species commonly used in Thailand. J. Food Biochem. 28: 355–372. doi:10.1111/j.1745-4514.2004.05203.x.
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., and Simpson, B. K. 2006b. Purification and characterization of trypsin from the spleen of tongol tuna (Thunnus tonggol). J. Agri. Food Chem. 54: 5617–5622. doi:10.1021/jf060699d.
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., and Simpson, B. K. 2007. Purification and characterization of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem. 100: 1580–1589. doi:10.1016/j.foodchem.2006.01.001.
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., and Simpson, B. K. 2009. Extraction of carotenoprotein from black tiger shrimp shells with the aid of bluefish trypsin. J. Food Biochem. 33: 201–217. doi:10.1111/j.1745-4514.2009.00213.x.
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., Simpson, B. K., and Saeki, H. 2006a. Trypsins from yellowfin tuna (Thunnus albacores) spleen: purification and characterization. Comp. Biochem. Physiol. B. 144: 47–56. doi:10.1016/j.cbpb.2006.01.006.
  • Ktari, N., Ben Khaled, H., Nasri, R., Jellouli, K., Ghorbel, S., and Nasri, M. 2012. Trypsin from zebra blenny (Salaria basilisca) viscera: purification, characterisation and potential application as a detergent additive. Food Chem. 130: 467–474. doi:10.1016/j.foodchem.2011.07.015.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–685.
  • Lamas, D. L., Yeanne, M. I., and Massa, A. E. 2017. Alkaline trypsin from the viscera and heads of Engraulis anchoita: partial purification and characterization. J. Biotechnol, Comput. Biol. Bionanotech. 98: 103–112.
  • Lineweaver, H., and Burk, D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658–666. doi:10.1021/ja01318a036.
  • Liu, Z. Y., Wang, Z., Xu, S. Y., and Xu, L. N. 2007. Two trypsin isoforms from the intestine of grass carp (Ctenopharyngodon idellus). J. Comp. Physiol. B. 177: 655–666. doi:10.1007/s00360-007-0163-6.
  • Marcuschi, M., Esposito, T. S., Machado, M. F. M., Hirata, I. Y., Machado, M. F. M., Silva, M. V., Carvalho, L. B., Oliveira, V., and Bezerra, R. S. 2010. Purification, characterization and substrate specificity of a trypsin from the Amazonian fish tambaqui (Colossoma macropomum). Biochem. Biophys. Res. Commun. 396: 667–673. doi:10.1016/j.bbrc.2010.04.155.
  • Maurer, K. H. 2004. Detergent proteases. Curr. Opin. Biotechnol. 15: 330–334. doi:10.1016/j.copbio.2004.06.005.
  • Rao, M.B., Tanksale, A.M., Ghatge, M.S., and Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol. Bio. Rev. 62:597-635.
  • Rungruangsak, T. K. 2007. Digestive efficiency, growth and qualities of muscle and oocyte in Atlantic (Salmo salar L.) fed on diets with krill meal as an alternative protein source. J. Food Biochem. 31: 509–540. doi:10.1111/j.1745-4514.2007.00127.x.
  • Rypniewski, W., Perrakis, A., Vorgias, C. E., and Wilson, K. 1994. Evolutionary divergence and conservation of trypsin. Protein Eng. 7: 57–64.
  • Sekizaki, H., Itoh, K., Murakami, M., Toyota, E., and Tanizawa, K. 2000. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins. Comp. Biochem. Physiol.B. 127: 337–346. doi:10.1016/S0305-0491(00)00267-4.
  • Shaw, E., and Glover, G. 1970. Further observations on substrate-derived chloromethyl ketones that inactivate trypsin. Arc. Biochem. Biophy. 139: 298–305. doi:10.1016/0003-9861(70)90481-9.
  • Shaw, E., Mares-Guia, M., and Cohen, W. 1965. Evidence for an active-center histidine in trypsin through use of a specific reagent, 1-chloro-3-tosylamido-7-amino-2-heptanone, the chloromethyl ketone derived from Nα-tosyl-L-lysine. Biochem. 4: 2219–2224. doi:10.1021/bi00886a039.
  • Shi, C., Marshall, S. N., and Simpson, B. K. 2007. Purification and characterization of trypsin from the pyloric caeca of the New Zealand hoki fish (Macruronus novaezealandie). J. Food Biochem. 31: 772–796. doi:10.1111/j.1745-4514.2007.00141.x.
  • Sila, A., Nasri, R., Jridi, M., Balti, R., Nasri, M., and Bougatef, A. 2012. Characterisation of trypsin purified from the viscera of Tunisian barbel (Barbus callensis) and its application for recovery of carotenoproteins from shrimp wastes. Food Chem. 132: 1287–1295. doi:10.1016/j.foodchem.2011.11.105.
  • Silva, J. F., Espósito, T. S., Marcuschi, M., Ribeiro, K., Cavalli, R. O., Oliveira, V., and Bezerra, R. S. 2011. Purification and partial characterisation of a trypsin from the processing waste of the silver mojarra (Diapterus rhombeus). Food Chem. 129: 777–782. doi:10.1016/j.foodchem.2011.05.019.
  • Simpson, B. K. 2000. Digestive proteinases from marine animals. In Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality. Haard, N. M., and Simpson, B. K. (Eds.). New York, NY: Marcel Dekker. Pp. 531–540.
  • Simpson, B. K., and Haard, N. F. 1984. Trypsin from Greenland cod (Gadus ogac), isolation and comparative properties. Comp. Biochem. Physiol. B. 79: 613–622.
  • Squires, E. J., Haard, N. F., and Felthem, L. A. 1986. Gastric proteases of the Greenland cod Gadus ogac. II. Structural properties. Biochem. Cell. Bio. 64: 215–222. doi:10.1139/o86-031.
  • Victor dos Santos, C. W., Da Costa Marques, M. E., de Araújo Tenório, H., de Miranda, E. C., and Pereir, H. J. V. 2016. Purification and characterization of trypsin from Luphiosilurus alexandri pyloriccecum. Biochem. Biophy. Rep. 8: 29–33. doi:10.1016/j.bbrep.2016.08.003.
  • Wang, Q., Gao, Z. X., Zhang, N., Shi, Y., Xie, X. L., and Chen, Q. X. 2010. Purification and characterization of trypsin from the intestine of hybrid tilapia (Oreochromis niloticus × O. aureus). J. Agri. Food Chem. 58: 655–659. doi:10.1021/jf903052s.
  • Zhou, L. Z., Ruan, M. M., Cai, Q. F., Lui, G. M., Sun, L. C., Su, W. J., and Cao, M. J. 2012. Purification, characterization and cDNA cloning of a trypsin from the hepatopancreas of snakehead (Channa argus). Comp. Biochem. Physiol. B. 161: 247–254. doi:10.1016/j.cbpb.2011.11.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.