162
Views
1
CrossRef citations to date
0
Altmetric
Articles

Ca2+- and Mg2+-Induced Conformational and Rheological Changes of Actomyosin Extracted from Fresh and Freeze-Thaw Tilapia

&

References

  • Arakawa, T., and Timasheff, S. N. 1982. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry. 21(25): 6545–6552.
  • Boyer, C., Joandel, S., Ouali, A., and Culioli, J. 1996. Ionic strength effects on heat-induced gelation of myofibrils and myosin from fast-and slow-twitch rabbit muscles. J. Food Sci. 61(6): 1143–1148. doi:10.1111/j.1365-2621.1996.tb10949.x
  • Bradford, M. 1976. A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–252.
  • Cao, Z.-F., Luo, W., and Zhou, H.-M. 1999. Effect of Mg2+ on the thermal inactivation and unfolding of creatine kinase. Int. J. Biochem. Cell Biol. 31(11): 1307–1313.
  • Chan, J. K., Gill, T. A., and Paulson, A. T. 1992. The dynamics of thermal denaturation of fish myosins. Food Res. Int. 25(2): 117–123. doi:10.1016/0963-9969(92)90152-U
  • del Mazo, M. L., Torrejón, P., Careche, M., and Tejada, M. 1999. Characteristics of the salt-soluble fraction of hake (Merluccius merluccius) fillets stored at −20 and −30°C. J. Agric. Food Chem. 47(4): 1372–1377.
  • Egelandsdal, B., Fretheim, K., and Samejima, K. 1986. Dynamic rheological measurements on heat-induced myosin gels: effect of ionic strength, protein concentration and addition of adenosine triphosphate or pyrophosphate. J. Sci. Food Agric. 37(9): 915–926. doi:10.1002/(ISSN)1097-0010
  • Ellman, G. L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1): 70–77.
  • Griffin, M., Casadio, R., and Bergamini, C. M. 2002. Transglutaminases: nature’s biological glues. Biochem. J. 368: 377–396. doi:10.1042/BJ20020579
  • Hemung, B.-O., and Yongsawatdigul, J. 2005. Ca2+ affects physiochemical and conformational changes of threadfin bream myosin and actin in a setting model. J. Food Sci. 70(8): 455–460. doi:10.1111/j.1365-2621.2005.tb11500.x
  • Jia, D., You, J., Hu, Y., Liu, R., and Xiong, S. 2015. Effect of CaCl2 on denaturation and aggregation of silver carp myosin during setting. Food Chem. 185: 212–218. doi:10.1016/j.foodchem.2015.03.130
  • Kang, E. J., Hunt, A. L., and Park, J. W. 2008. Effects of salinity on physicochemical properties of Alaska pollock surimi after repeated freeze-thaw cycles. J. Food Sci. 73(5): C347–C355. doi:10.1111/j.1750-3841.2008.00753.x
  • Ko, W.-C., Yu, C. C., and Hsu, K.-C. 2007. Changes in conformation and sulfhydryl groups of tilapia actomyosin by thermal treatment. LWT Food Sci. Technol. 40(8): 1316–1320. doi:10.1016/j.lwt.2006.10.002
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–685.
  • Lanier, T. C., Yongsawatdigul, J., and Carvajal-Rondanelli, P. 2014. Surimi gelation chemistry. In Surimi and Surimi Seafoods. Park, J. W. (Ed.). (3rd ed.). New York: CRC press. pp. 101–139.
  • Lee, N., and Park, J. W. 1998. Calcium compounds to improve gel functionality of Pacific whiting and Alaska pollock surimi. J. Food Sci. 63(6): 969–974. doi:10.1111/j.1365-2621.1998.tb15835.x
  • Lertwittayanon, K., Benjakul, S., Maqsood, S., and Encarnacion, A. B. 2013. Effect of different salts on dewatering and properties of yellowtail barracuda surimi. Int. Aquat Res. 5: 10. doi:10.1186/2008-6970-5-10
  • Liu, R., Zhao, S.-M., Xiong, S.-B., Xie, B.-J., and Liu, H. M. 2007. Studies on fish and pork paste gelation by dynamic rheology and circular dichroism. J. Food Sci. 72(7): E399–E403. doi:10.1111/j.1750-3841.2007.00470.x
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193(1): 265–275.
  • MacDonald, G. A., Carvajal-Rondanelli, P. A., and Lanier, T. C. 2014. Stabilization of proteins in surimi. In Surimi and Surimi Seafood. Park, J. W. (Eds.). (3rd ed.). New York: CRC Press. pp. 193–226.
  • MacDonald, G. A., and Lanier, T. C. 1994. Actomyosin stabilizationtofreeze‐thawand heat denaturation by lactate salts. J. Food Sci. 59(1): 101–105. doi:10.1111/j.1365-2621.1994.tb06907.x
  • Nakaya, M., Watabe, S., and Ooi, T. 1995. Differences in the thermal stability of acclimation temperature-associated types of carp myosin and its rod on differential scanning calorimetry. Biochemistry. 34(9): 3114–3120.
  • Ogawa, M., Nakamura, S., Horimoto, Y., An, H., Tsuchiya, T., and Nakai, S. 1999. Raman spectroscopic study of changes in fish actomyosin during setting. J. Agr. Food Chem. 47(8): 3309–3318. doi:10.1021/jf9813079
  • Reed, Z. H., and Park, J. W. 2011. Thermophysical characterization of tilapia myosin and its subfragments. J. Food Sci. 76(7): C1050–C1055. doi:10.1111/j.1750-3841.2011.02330.x
  • Reynolds, J., Park, J. W., and Choi, Y. J. 2002. Physicochemical properties of Pacific whiting surimi as affected by various freezing and storage conditions. J. Food Sci. 67(6): 2072–2078. doi:10.1111/j.1365-2621.2002.tb09503.x
  • Riebroy, S., Benjakul, S., Visessanguan, W., Erikson, U., and Rustad, T. 2009. Acid-induced gelation of natural actomyosin from Atlantic cod (Gadus morhua) and burbot (Lota lota). Food Hydrocoll. 23(1): 26–39. doi:10.1016/j.foodhyd.2007.11.010
  • Saeki, H. 1996. Gel-forming ability and cryostability of frozen surimi processed with CaCl2-washing. Fish. Sci. 62(2): 252–256. doi:10.2331/fishsci.62.252
  • Togashi, M., Kakinuma, M., Nakaya, M., Ooi, T., and Watabe, S. 2002. Differential scanning calorimetry and circular dichroism spectrometry of walleye pollack myosin and light meromyosin. J. Agric. Food Chem. 50(17): 4803–4811.
  • Xiong, Y. L., and Brekke, C. J. 1991. Gelation properties of chicken myofibrils treated with calcium and magnesium chlorides. J. Muscle Foods. 2(1): 21–36. doi:10.1111/jmf.1991.2.issue-1
  • Yongsawatdigul, J., and Park, J. W. 2003. Thermal denaturation and aggregation of threadfin bream actomyosin. Food Chem. 83(3): 409–416. doi:10.1016/S0308-8146(03)00105-5
  • Yongsawatdigul, J., Park, J. W., Virulhakul, P., and Viratchakul, S. 2000. Proteolytic degradation of tropical tilapia surimi. J. Food Sci. 65(1): 129–133. doi:10.1111/j.1365-2621.2000.tb15967.x
  • Yongsawatdigul, J., Pivisan, S., Wongngam, W., and Benjakul, S. 2012. Gelation characteristics of mince and washed mince from small scale mud carp and common carp. J. Aquat Food Prod. T. 22(5): 460–473. doi:10.1080/10498850.2012.664251
  • Yongsawatdigul, J., Piyadhammaviboon, P., and Singchan, K. 2006. Gel-forming ability of small scale mud carp (Cirrhiana microlepis) unwashed and washed mince as related to endogenous proteinases and transglutaminase activities. Eur. Food Res. Technol. 223: 769–774. doi:10.1007/s00217-006-0266-4
  • Yongsawatdigul, J., and Sinsuwan, S. 2007. Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting. Food Hydrocoll. 21(3): 359–367. doi:10.1016/j.foodhyd.2006.04.006
  • Zhu, X., and Lee, T.-C. 2007. Application of a biogenic extra cellular ice nucleator for food processing: effects on the freeze-thaw stability of fish actomyosin from tilapia. Int. J. Food Sci. Tech. 42(6): 768–772. doi:10.1111/ifs.2007.42.issue-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.