735
Views
10
CrossRef citations to date
0
Altmetric
Articles

Comparative Analysis of Different Drying Techniques Based on the Qualitative Characteristics of Spirulina platensis Biomass

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Abd El-Baky HH, El Baz FK, El-Baroty GS. 2009. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects in vitro toward hepatotoxicity model. Electron J Environ Agric Food Chem. 8(11):1099–112.
  • Agustini TW, Suzery M, Sutrisnanto D, Ma’ruf WF. 2015. Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. Procedia Environ Sci. 23(Ictcred 2014):282–89.
  • Aouir A, Amiali M, Bitam A, Benchabane A, Raghavan VG. 2017. Comparison of the biochemical composition of different arthrospira platensis strains from Algeria, Chad and the USA. J Food Meas Charact. 11:913–23.
  • Boussiba S, Richmond AE. 1980. C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol. 125(1–2):143–47.
  • Britton G, Liaaen-Jensen S, Pfander H. 2004. Carotenoids. Handbook. doi:10.1007/978-3-0348-7836-4
  • Chang Y, Wu Z, Bian L, Feng D, Leung DYC. 2013. Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Appl Energy. 102:427–31.
  • Chen C-L, Chang J-S, Lee D-J. 2015. Dewatering and drying methods for microalgae. Dry Technol. 33(4):443–54.
  • Cunniff PA. 1998. Official methods of analysis of AOAC international. Assoc Off Anal Chem Int CD–ROM. doi:10.3109/15563657608988149
  • Danesi EDG, Rangel-Yagui CO, Carvalho JCM, Sato S. 2004. Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy. 26(4):329–35.
  • Deng R, Chow TJ. 2010. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae spirulina. Cardiovasc Ther. 28(4):33–45.
  • Dey S, Rathod VK. 2013. Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrason Sonochem. 20(1):271–76.
  • Divakaran S, Duerr EO. 1987. Characteristics of a blue-green alga (Spirulina platensis) preserved by acidulation with sulfuric acid. J Agric Food Chem. 35:568–70.
  • Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M. 2015. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crops Prod. 75:141–49.
  • Ejike CECC, Collins SA, Balasuriya N, Swanson AK, Mason B, Udenigwe CC. 2017. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci Technol. 59:30–36.
  • Graham JE, Bryant DA. 2009. The biosynthetic pathway for myxol-2′ fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol. 191:3292–300.
  • Guedes AC, Amaro HM, Malcata FX. 2011. Microalgae as sources of carotenoids. Mar Drugs. 9(4):625–44.
  • Hua TC, Liu BL, Zhang H. 2010. Freeze-drying of pharmaceutical and food products. Cambridge: Woodhead Publishing. doi:10.1533/9781845697471
  • Jaime L, Mendiola JA, Herrero M, Soler-Rivas C, Santoyo S, Senorans FJ, Ibanez E. 2005. Separation and characterization of antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC, and HPLC-DAD. J Sep Sci. 28(16):2111–19.
  • Kandasamy S, Nagarajan P, Sujatha K, Nagarajan P. 2013. Optimization of growth conditions for carotenoid production from Spirulina platensis (Geitler). Int J Curr Microbiol Appl Sci. 2(10):325–28.
  • Knockaert G, Lemmens L, Van Buggenhout S, Hendrickx M, Van Loey A. 2014. Changes in β-carotene during processing of carrots. Process Impact Active Components Food. doi:10.1016/B978-0-12-404699-3.00002-0
  • Kumar M, Sansaniwal SK, Khatak P. 2016. Progress in solar dryers for drying various commodities. Renew Sustain Energy Rev. doi:10.1016/j.rser.2015.10.158
  • Kyriakopoulou K, Pappa A, Krokida M, Detsi A, Kefalas P. 2013. Effects of drying and extraction methods on the quality and antioxidant activity of sea buckthorn (Hippophae rhamnoides) berries and leaves. Dry Technol. 31(9):1063–76.
  • Lin LP. 1985. Microstructure of spray-dried and freeze-dried microalgal powders. Food Microstruct. 4(2):341–48.
  • Marques LG, Freire JT. 2005. Analysis of freeze-drying of tropical fruits. Dry Technol. 23(9–11):2169–84.
  • Moraes CC, Sala L, Cerveira GP, Kalil SJ. 2011. C-Phycocyanin extraction from Spirulina platensis wet biomass. Brazilian J Chem Eng. 28(1):45–49.
  • Multari S, Marsol-Vall A, Keskitalo M, Yang B, Suomela JP. 2018. Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. J Food Compos Anal. 72:75–82.
  • Nakagawa K, Ritcharoen W, Sri-Uam P, Pavasant P, Adachi S. 2016. Antioxidant properties of convective-air-dried Spirulina maxima: evaluation of phycocyanin retention by a simple mathematical model of air-drying. Food Bioprod Process. 100:292–302.
  • Oliveira EG, Rosa GS, Moraes MA, Pinto LAA. 2008. Phycocyanin content of Spirulina platensis dried in spouted bed and thin layer. J Food Process Eng. 31(1):34–50.
  • Oliveira EG, Duarte JH, Moraes K, Crexi VT, Pinto LAA. 2010a. Optimisation of Spirulina platensis convective drying: evaluation of phycocyanin loss and lipid oxidation. Int J Food Sci Technol. 45:1572–78.
  • Papalia T, Sidari R, Panuccio MR. 2019. Impact of different storage methods on bioactive compounds in arthrospira platensis biomass. Molecules. 24:2810.
  • Pohndorf RS, Camara ÁS, Larrosa APQ, Pinheiro CP, Strieder MM, Pinto LAA. 2016. Production of lipids from microalgae Spirulina sp.: influence of drying, cell disruption and extraction methods. Biomass Bioenergy. 93:25–32.
  • Que F, Mao L, Fang X, Wu T. 2008. Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. Int J Food Sci Technol. 43(7):1195–201.
  • Rangel-Yagui CDO, Danesi EDG, De Carvalho JCM, Sato S. 2004. Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol. 92(2):133–41.
  • Ratti C. 2001. Hot air and freeze-drying of high-value foods: a review. J Food Eng. 49(4):311–19.
  • Ryckebosch E, Muylaert K, Eeckhout M, Ruyssen T, Foubert I. 2011. Influence of drying and storage on lipid and carotenoid stability of the Microalga Phaeodactylum tricornutum. J Agric Food Chem. 59(20):11063–69.
  • Sarada R, Pillai MG, Ravishankar GA. 1999. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem. 34(8):795–801.
  • Seshadri CV, Umesh BV, Manoharan R. 1991. Beta-carotene studies in Spirulina. Bioresour Technol. 38(2–3):111–13.
  • Shih MC, Kuo CC, Chiang W. 2009. Effects of drying and extrusion on colour, chemical composition, antioxidant activities and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 117:114–21.
  • Show K-Y, Lee D-J, Mujumdar AS. 2015. Advances and Challenges on Algae Harvesting and Drying. Dry Technol. 33(4):386–94.
  • Siefermann-Harms D. 1994. Light and Temperature Control of Season-Dependent Changes in the α- and β-Carotene Content of Spruce Needles. J Plant Physiol. 143:488–94.
  • Silveira ST, Burkert JFM, Costa JAV, Burkert CAV, Kalil SJ. 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresour Technol. 98(8):1629–34.
  • Sogi DS, Siddiq M, Dolan KD. 2015. Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT - Food Sci Technol. 62(1):564–68.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J Biosci Bioeng. 101(2):87–96.
  • Stramarkou M, Papadaki S, Konstantina Kyriakopoulou MK. 2017. Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris. J Appl Phycol. 29:1–14.
  • Šumić Z, Vakula A, Tepić A, Čakarević J, Vitas J, Pavlić B. 2016. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem. 203:465–75.
  • Vigani M, Parisi C, Rodríguez-Cerezo E, Barbosa MJ, Sijtsma L, Ploeg M, Enzing C. 2015. Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci Technol. 42(1):81–92.
  • Viswanathan T, Mani S, Das KC, Chinnasamy S, Bhatnagar A, Singh RK, Singh M. 2012. Effect of cell rupturing methods on the drying characteristics and lipid compositions of microalgae. Bioresour Technol. 126:131–36.
  • Wani SM, Masoodi FA, Haq E, Ahmad M, Ganai SA. 2020. Influence of processing methods and storage on phenolic compounds and carotenoids of apricots. LWT. 132:109846.
  • Wu L, Orikasa T, Ogawa Y, Tagawa A. 2007. Vacuum drying characteristics of eggplants. J Food Eng. 83(3):422–29.
  • Young A. 2004. Carotenoids: handbook. Synthesis (Stuttg). 2004:1901–1901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.