2,845
Views
69
CrossRef citations to date
0
Altmetric
Articles

Identifying Essential Epistemic Heuristics for Guiding Mechanistic Reasoning in Science Learning

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Baek, H., Schwarz, C., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS fifth-grade approach and findings. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling: Cognitive tools for scientific enquiry (pp. 195–218). Dordrecht, the Netherlands: Springer.
  • Bechtel, W. (2011). Mechanism and biological explanation. Philosophy of Science, 78(4), 533–557. doi:10.1086/661513
  • Ben-Zvi-Assaraf, O., & Orion, N. (2010). Four case studies, six years later: Developing system thinking skills in junior high school and sustaining them over time. Journal of Research in Science Teaching, 47(10), 1253–1280. doi:10.1002/tea.v47:10
  • Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68–94. doi:10.1002/tea.20446
  • Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082–1112. doi:10.1002/tea.v53.7
  • Bolger, M. S., Kobiela, M., Weinberg, P. J., & Lehrer, R. (2012). Children’s mechanistic reasoning. Cognition and Instruction, 30(2), 170–206. doi:10.1080/07370008.2012.661815
  • Brown, J. R. (2012). The laboratory of the mind: Thought experiments in the natural sciences. New York, NY: Routledge.
  • Carlone, H. B., Huan-Frank, J., & Webb, A. (2011). Assessing equity beyond knowledge- and skills-based outcomes: A comparative ethnography of two fourth-grade reform-based science classrooms. Journal of Research in Science Teaching, 48, 459–485. doi:10.1002/tea.20413
  • Chinn, C., Buckland, L., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141–167. doi:10.1080/00461520.2011.587722
  • Collins, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and strategies to guide inquiry. Educational Psychologist, 28(1), 25–42. doi:10.1207/s15326985ep2801_3
  • Darden, L., & Craver, C. (2002). Strategies in the interfield discovery of the mechanism of protein synthesis. Studies in History and Philosophy of Science Part C, 33(1), 1–28. doi:10.1016/S1369-8486(01)00021-8
  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291. doi:10.3102/0091732X07309371
  • Elby, A., & Hammer, D. (2010). Epistemological resources and framing: A cognitive framework for helping teachers interpret and respond to their students’ epistemologies. In L. D. Bendixen & F. C. Feucht (Eds.), Personal epistemology in the classroom: Theory, research, and implications for practice (pp. 409–434). Cambridge, UK: Cambridge University Press.
  • Esch, R. K., & Smith, P. S. (2016). Exploring the validity of project-developed guidelines for scoring student task responses. Chapel Hill, NC: Horizon Research Inc.
  • Forman, E. A., & Ford, M. J. (2014). Authority and accountability in light of disciplinary practices in science. International Journal of Educational Research, 64, 199–210. doi:10.1016/j.ijer.2013.07.009
  • Gee, J. P. (2014). An introduction to discourse analysis: Theory and method. New York, NY: Routledge.
  • Grotzer, T. A., & Basca, B. B. (2003). How does grasping the underlying causal structures of ecosystems impact students’ understanding? Journal of Biological Education, 38(1), 16–29. doi:10.1080/00219266.2003.9655891
  • Grotzer, T. A., Derbiszewska, K., & Solis, S. L. (2017). Leveraging fourth and sixth graders’ experiences to reveal understanding of the forms and features of distributed causality. Cognition and Instruction, 35(1), 55–87. doi:10.1080/07370008.2016.1251808
  • Grotzer, T. A., Kamarainen, A. M., Tutwiler, M. S., Metcalf, S., & Dede, C. (2013). Learning to reason about ecosystems dynamics over time: The challenges of an event-based causal focus. BioScience, 63(4), 288–296. doi:10.1525/bio.2013.63.4.9
  • Grotzer, T. A., & Perkins, D. N. (2000). A taxonomy of causal models: The conceptual leaps between models and students reflections on them. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, New Orleans, LA.
  • Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169–190). New York, NY: Routledge.
  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. The Journal of the Learning Sciences, 12(1), 53–90. doi:10.1207/S15327809JLS1201_3
  • Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89–120). Greenwich, CT: Information Age Publishing.
  • Hmelo-Silver, C. E., & Azevedo, R. (2006). Understanding complex systems: Some core challenges. The Journal of the Learning Sciences, 15(1), 53–61. doi:10.1207/s15327809jls1501_7
  • Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems. The Journal of the Learning Sciences, 16(3), 307–331. doi:10.1080/10508400701413401
  • Hmelo-Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cognitive Science, 28(1), 127–138. doi:10.1207/s15516709cog2801_7
  • Jacobson, M. J. (2001). Problem solving, cognition, and complex systems: Differences between experts and novices. Complexity, 6(3), 41–49. doi:10.1002/(ISSN)1099-0526
  • Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15(1), 11–34. doi:10.1207/s15327809jls1501_4
  • Jiménez-Aleixandre, M. P., Rodríguez, A. B., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757–792. doi:10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  • Kapon, S. (2017). Unpacking sensemaking. Science Education, 101(1), 165–198. doi:10.1002/sce.2017.101.issue-1
  • Kelly, G. J. (2007). Discourse in science classrooms. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 443–469). New York, NY: Routledge.
  • Kelly, G. J. (2011). Scientific literacy, discourse, and epistemic practices. In C. Linder, L. Östman, D. A. Roberts, P. O. Wickman, G. Ericksen, & A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 61–73). New York, NY: Routledge.
  • Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: Developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32. doi:10.1002/(ISSN)1098-237X
  • Krajcik, J., Reiser, B. J., Sutherland, L. M., & Fortus, D. (2013). Investigating and questioning our world through science and technology (IQWST) (2nd ed.). Greenwich, CT: Sangari Active Science.
  • Krist, C. (2016). Meaningful engagement in scientific practices: How classroom communities develop authentic epistemologies for science ( Doctoral dissertation). Retrieved from ProQuest. (1826020461).
  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521. doi:10.1002/(ISSN)1098-2736
  • Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy: Supporting development in learning in contexts. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology (Vol. 4, 6th ed., pp. 153–196). Hoboken, NJ: John Wiley and Sons.
  • Lesh, R., & Doerr, H. (2003). Foundations of a model and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). New York, NY: Routledge.
  • Levy, S. T., & Wilensky, U. (2009). Crossing levels and representations: The Connected Chemistry (CC1) curriculum. Journal of Science Education and Technology, 18(3), 224–242. doi:10.1007/s10956-009-9152-8
  • Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57–68. doi:10.1207/s15326985ep3901_6
  • Louca, L. T., Zacharia, Z. C., & Constantinou, C. P. (2011). In quest of productive modeling-based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919–951. doi:10.1002/tea.v48.8
  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25. doi:10.1086/392759
  • Manz, E. (2012). Understanding the codevelopment of modeling practice and ecological knowledge. Science Education, 96(6), 1071–1105. doi:10.1002/sce.v96.6
  • Manz, E. (2016). Examining evidence construction as the transformation of the material world into community knowledge. Journal of Research in Science Teaching, 53(7), 1113–1140. doi:10.1002/tea.v53.7
  • Mayr, E. (1961). Cause and effect in biology. Science, 134(3489), 1501–1506. doi:10.1126/science.134.3489.1501
  • Moshman, D., & Tarricone, P. (2016). Logical and causal reasoning. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 54–67). New York, NY: Routledge.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  • Nersessian, N. (1992a). Constructing and instructing: The role of abstraction techniques in creating and learning physics. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 48–68). Albany, NY: State University of New York Press.
  • Nersessian, N. J. (1992b). How do scientists think? Capturing the dynamics of conceptual change in science. Cognitive Models of Science, 15, 3–44.
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
  • Östman, L., & Wickman, P. O. (2014). A pragmatic approach on epistemology, teaching, and learning. Science Education, 98(3), 375–382. doi:10.1002/sce.21105
  • Passmore, C. M., Gouvea, J. S., & Giere, R. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1171–1202). Dordrecht, the Netherlands: Springer.
  • Perkins, D. N., & Grotzer, T. A. (2000). Models and moves: Focusing on dimensions of causal complexity to achieve deeper scientific understanding. Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA.
  • Perkins, D. N., & Grotzer, T. A. (2005). Dimensions of causal understanding: The role of complex causal models in students’ understanding of science. Studies in Science Education, 41(1), 117–165. doi:10.1080/03057260508560216
  • Rosenberg, S., Hammer, D., & Phelan, J. (2006). Multiple epistemological coherences in an eighth-grade discussion of the rock cycle. The Journal of the Learning Sciences, 15(2), 261–292. doi:10.1207/s15327809jls1502_4
  • Russ, R., Scherr, R., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499–525. doi:10.1002/(ISSN)1098-237X
  • Ryu, S., & Sandoval, W. A. (2012). Improvements to elementary children’s epistemic understanding from sustained argumentation. Science Education, 96(3), 488–526. doi:10.1002/sce.21006
  • Salmon, W. C. (1978). Why ask, “why?”? An inquiry concerning scientific explanation. In W. C. Salmon (Ed.), Hans Reichenbach: Logical empiricist (pp. 403–425). Dordrecht, the Netherlands: Springer.
  • Sandoval, W. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634–656. doi:10.1002/(ISSN)1098-237X
  • Sandoval, W. (2014). Science education’s need for a theory of epistemological development. Science Education, 98(3), 383–387. doi:10.1002/sce.21107
  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102. doi:10.1037/0012-1649.32.1.102
  • Scherr, R. E., & Hammer, D. (2009). Student behavior and epistemological framing: Examples from collaborative active-learning activities in physics. Cognition and Instruction, 27(2), 147–174. doi:10.1080/07370000902797379
  • Schwarz, C. V., Passmore, C., & Reiser, B. J. (2017). Moving beyond “knowing about” science to making sense of the world. In C. V. Schwarz, C. Passmore, & B. J. Reiser (Eds.), Helping students make sense of the world using next generation science and engineering practices (pp. 3–22). Arlington, VA: NSTA Press.
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., … Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. doi:10.1002/tea.v46:6
  • Scientific Practices Research Group. (2015). Nature of Account consideration rubric [PDF document]. Retrieved from http://www.christinakrist.org/science-practices.html.
  • Senge, P. M., & Sterman, J. D. (1992). Systems thinking and organizational learning: Acting locally and thinking globally in the organization of the future. European Journal of Operational Research, 59(1), 137–150. doi:10.1016/0377-2217(92)90011-W
  • Sengupta, P., & Wilensky, U. (2009). Learning electricity with NIELS: Thinking with electrons and thinking in levels. International Journal of Computers for Mathematical Learning, 14(1), 21–50. doi:10.1007/s10758-009-9144-z
  • Simon, H. A. (1977). The organization of complex systems. In R. S. Cohen & M. W. Wartofsky (Eds.), Models of discovery (pp. 245–261). Dordrecht, the Netherlands: Springer.
  • Smith, C., Maclin, D., Houghton, C., & Hennessey, M. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18(3), 349–422. doi:10.1207/S1532690XCI1803_3
  • Springer, K., & Keil, F. C. (1991). Early differentiation of causal mechanisms appropriate to biological and nonbiological kinds. Child Development, 62(4), 767–781.
  • Stroupe, D. (2014). Examining classroom science practice communities: How teachers and students negotiate epistemic agency and learn science-as-practice. Science Education, 98(3), 487–516. doi:10.1002/sce.21112
  • Thompson, J., Windschitl, M., & Braaten, M. (2013). Developing a theory of ambitious early-career teacher practice. American Educational Research Journal, 50(3), 574–615. doi:10.3102/0002831213476334
  • Tretter, T. R., Jones, M. G., Andre, T., Negishi, A., & Minogue, J. (2006). Conceptual boundaries and distances: Students’ and experts’ concepts of the scale of scientific phenomena. Journal of Research in Science Teaching, 43(3), 282–319. doi:10.1002/(ISSN)1098-2736
  • Van Mil, M. H., Boerwinkel, D. J., & Waarlo, A. J. (2013). Modelling molecular mechanisms: A framework of scientific reasoning to construct molecular-level explanations for cellular behaviour. Science & Education, 22(1), 93–118. doi:10.1007/s11191-011-9379-7
  • Vattam, S. S., Goel, A. K., Rugaber, S., Hmelo-Silver, C. E., Jordan, R., Gray, S., & Sinha, S. (2011). Understanding complex natural systems by articulating structure-behavior-function models. Journal of Educational Technology & Society, 14(1), 66–81.
  • Wickman, P. O. (2004). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88(3), 325–344. doi:10.1002/sce.10129
  • Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through constructing and testing computational theories—An embodied modeling approach. Cognition and Instruction, 24(2), 171–209. doi:10.1207/s1532690xci2402_1
  • Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19. doi:10.1023/A:1009421303064
  • Wilkerson-Jerde, M. H., Gravel, B. E., & Macrander, C. A. (2015). Exploring shifts in middle school learners modeling activity while generating drawings, animations, and computational simulations of molecular diffusion. Journal of Science Education and Technology, 24(2–3), 396–415. doi:10.1007/s10956-014-9497-5
  • Witherington, D. C. (2011). Taking emergence seriously: The centrality of circular causality for dynamic systems approaches to development. Human Development, 54(2), 66–92. doi:10.1159/000326814
  • Yoon, S. (2018). Complex systems and the Learning Sciences: Implications for learning, theory, and methodologies. In F. Fischer, C. Hmelo-Silver, S. Goldman, & P. Reimann (Eds.), International handbook of the learning sciences (pp. 157–166). New York, NY: Routledge Press.
  • Yoon, S. A., Goh, S. E., & Park, M. (2018). Teaching and learning about complex systems in K–12 science education: A review of empirical studies 1995–2015. Review of Educational Research, 88(2), 285–325. doi:10.3102/0034654317746090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.