680
Views
7
CrossRef citations to date
0
Altmetric
Articles

Primary Grade Children’s Capacity to Understand Microevolution: The Power of Leveraging Their Fruitful Intuitions and Engagement in Scientific Practices

, , , , , , & ORCID Icon show all

References

  • Adams, R. J., Wu, M., & Wilson, M. (2012). Conquest 3.0 (computer program). Hawthorne, Australia: ACER.
  • Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of the conceptual inventory of natural selection. Journal of Research in Science Teaching, 39, 952–978. doi:10.1002/(ISSN)1098-2736
  • Ash, D. (2008). Thematic continuities: Talking and thinking about adaptation in a socially-complex classroom. Journal of Research in Science Teaching, 45(1), 1–30. doi:10.1002/(ISSN)1098-2736
  • Asterhan, C. S., & Schwartz, B. B. (2007). The effects of monological and dialogical argumentation on concept learning in evolutionary theory. Journal of Educational Psychology, 99(3), 626–639. doi:10.1037/0022-0663.99.3.626
  • Astuti, R., Solomon, G. E. A., & Carey, S. (2004). Constraints on conceptual development. Monographs of the Society for Research in Child Development, 69, 1–161.
  • Berti, A. E., Toneatti, L., & Rosati, V. (2010). Children’s conceptions about the origins of species: A study of Italian children’s conceptions with and without instruction. The Journal of the Learning Sciences, 19, 506–538. doi:10.1080/10508406.2010.508027
  • Bishop, B. A., & Anderson, C. W. (1990). Students’ conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27, 415–427. doi:10.1002/tea.3660270503
  • Blank, R. K. (2013). Science instructional time is declining in American elementary schools: What are the implications for student achievement and closing the gap? Science Education, 97(6), 830–847. doi:10.1002/sce.21078
  • Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in evaluating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178. doi:10.1207/s15327809jls0202_2
  • Brown, A. L., & Campione, J. (1994). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons integrating cognitive theory and classroom practice (pp. 229–270). Cambridge, MA: MIT Press.
  • Brown, A. L. (1997). Transforming schools into communities of thinking and learning about serious matters. American Psychologist, 52, 399–413. doi:10.1037/0003-066X.52.4.399
  • Browning, E., & Hohenstien, J. (2015). The use of narrative to promote primary school children’s understanding of evolution. Education, 43(5), 530–547.
  • Bruner, J. (1997). The culture of education. Cambridge, MA: Harvard University Press.
  • Burkhardt, R. W. (2013). Lamarck, evolution, and the inheritance of acquired characteristics. Genetics, 194, 793–805. doi:10.1534/genetics.113.151852
  • Cardace, A., Metz, K. E., & Wilson, M. (2019, November). The power of a learning progression perspective for analyzing structured interviews to inform instruction. Presentation at the 2019 CERA Annual Conference, Sacramento, CA.
  • Chi, M., Hutchinson, J. E., & Robin, A. F. (1989). How inference about novel domain-related concepts can be constrained by structured knowledge. Merrill-Palmer Quarterly, 35(1), 27–62.
  • Cody, M. L., & Overton, J. (1996). Short-term evolution of reduced dispersal in island plant populations. The Journal of Ecology, 84(1), 53–61. doi:10.2307/2261699
  • Demastes, S. S., Settlage, J., & Good, R. (1990). Students’ conceptions of natural selection and its role in evolution: Cases of replication and comparison. Journal of Research in Science Teaching, 32(5), 535–550. doi:10.1002/tea.3660320509
  • Denison, S., & Xu, F. (2014). The origins of probabilistic inference in human infants. Cognition, 130(3), 345–347. doi:10.1016/j.cognition.2013.12.001
  • Dewey, J. (1929). The quest for certainty. New York, NY: Minton, Balche & Co.
  • Duschl, R., Schweinburger, H. A., & Shouse, A. (Eds.). (2007). Taking science to school: Learning and teaching in grades K–8. Washington, DC: National Academy Press.
  • Emmons, N., Lees, K., & Kelemen, D. (2018). Young children’s near and far transfer of the basic mechanism of natural selection: An analogical storybook intervention. Journal of Research in Science Teaching, 55, 351–357. doi:10.1002/tea.21421
  • Endler, J. (1980). Natural selection on color patterns in Poecillia reticulata. Evolution, 34(1), 76–91. doi:10.1111/j.1558-5646.1980.tb04790.x
  • Fay, A. L., & Klahr, D. (1996). Knowing and guessing and guessing about knowing: Preschoolers’ understanding in indeterminancy. Child Development, 67(2), 689–716. doi:10.2307/1131841
  • Ferrari, M., & Chi, M. T. H. (1998). The nature of naïve explanations of natural selection. International Journal of Science Education, 20(10), 1231–1256. doi:10.1080/0950069980201005
  • Gallup, Inc. (2014). Evolution, creationism, and intelligent design. Retrieved from http://www.gallup.com/poll/21814/evolution-creationism-intelligent-design.aspx
  • Gelman, R. (2003). The essential child. Oxford, UK: Oxford University Press.
  • Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts and theories. Cambridge, MA: MIT Press.
  • Gould, S. J. (1985). The flamingo's smile: reflections in natural history. WW Norton and Company.
  • Gould, S. J. (1996). Full house: The spread of excellence from Plato to Darwin. New York, NY: Three Rivers Press.
  • Gregory, T. R., & Ellis, C. A. (2009). Conceptions of evolution among science graduate students. BioScience, 59(9), 792–799. doi:10.1525/bio.2009.59.9.11
  • Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics 3: Speech acts (pp. 26–40). New York, NY: Academic Press.
  • Grotzer, T., Lynneth, S. S., Tutwiler, M., Shane, M., & Powell, M. (2017). A study of children’s reasoning about probabilistic causality: Implications for understanding complex systems and for instructional design. Instructional Science, 45(1), 25–52. doi:10.1007/s11251-016-9389-6
  • Hickling, A. K., & Wellman, H. M. (2001). The emergence of children’s causal explanations and theories: Evidence from everyday conversation. Developmental Psychology, 37(5), 668–683. doi:10.1037/0012-1649.37.5.668
  • Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., … Wearne, D. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 12–21. doi:10.3102/0013189X025004012
  • Inagaki, K., & Hatano, G. (1987). Young children’s spontaneous personification as analogy. Child Development, 58, 1013–1020. doi:10.2307/1130542
  • Johnson, A. M., Sheskin, M., Johnson, S. G. B., & Keil, F. C. (2018). Preferences for explanation generality develop early in biology but not physics. Child Development, 89(4), 1110–1119. doi:10.1111/cdev.12804
  • Kahneman, D., Slovic, P., & Tverksy, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge, England: Cambridge University Press.
  • Kampourakis, K., & Zogza, V. (2008). Students’ intuitive explanations of the causes of homologies and adaptations. Science and Education, 17, 27–47. doi:10.1007/s11191-007-9075-9
  • Keil, F. C. (1995). The growth of causal understandings of natural kinds. In D. Sperber, D. Premack, & A. J. Premack (Eds.), Symposia of the Fyssen Foundation. Causal Cognition: A multidisciplinary debate (pp. 234-267).
  • Kelemen, D. (1999). The scope of teleological thinking in preschool children. Cognition, 70, 241–272. doi:10.1016/S0010-0277(99)00010-4
  • Kelemen, D., Emmons, N., Seston-Schillaci, R., & Ganea, P. (2014). Young children can be taught basic natural selection using a picture-book intervention. Psychological Science, 25, 893–902. doi:10.1177/0956797613518350
  • Kelemen, D., Rottman, J., & Seston, R. (2002). Professional physical scientists display tenacious teleological tendencies: Purpose-based reasoning as a cognitive default. Experimental Psychology: General, 142(4), 1074–1083. doi:10.1037/a0030399
  • Kelemen, D., Widdowson, D., Posner, T., Brown, A. L., & Casler, K. (2003). Teleological-functional constraints on preschool children’s reasoning about living things. Developmental Science, 6(3), 329–345. doi:10.1111/1467-7687.00288
  • Keller, E. F. (1984). A feeling for the organism: The life and work of Barbara McClintock. New York, NY: Henry Holt and Company: New York, NY.
  • Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208(4450), 1335–1342. doi:10.1126/science.208.4450.1335
  • Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635–679. doi:10.3102/00028312041003635
  • Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96(4), 701–724. doi:10.1002/sce.v96.4
  • Lockhart, K. L., Nakashima, N., Inagaki, K., & Keil, F. C. (2008). From ugly duckling to swan? Japanese and American beliefs about the stability and origins of traits. Cognitive Development, 23(1), 155–179. doi:10.1016/j.cogdev.2007.08.001
  • MacQueen, K., McLellan, E., Kay, K., & Milstein, B. (1998). Cookbook development for team-based qualitative analysis. Cultural Anthropology Methods, 10(2), 31–36.
  • Manz, E. (2015). Resistance and the development of scientific practice: Designing the mangle into scientific instruction. Cognition and Instruction, 33(2), 88–124. doi:10.1080/07370008.2014.1000490
  • Mayr, E. (1988). Toward a new philosophy of biology: Observations of an evolutionist. Cambridge, MA: Harvard University Press.
  • Mayr, E. (1997). This is biology: The science of the living world. Cambridge, MA: Harvard University Press.
  • Medin, D., & Atran, S. (2004). The native mind: Biological categorization and reasoning in development and across cultures. Psychological Review, 111(4), 960–983. doi:10.1037/0033-295X.111.4.960
  • Metz, K. E. (1998). Emergent understanding and attribution of randomness: Comparative analysis of the reasoning of primary grade children and undergraduates. Cognition and Instruction, 16(3), 285–365. doi:10.1207/s1532690xci1603_3
  • Metz, K. E. (2004). Children’s understanding of scientific inquiry: Their conceptualization of uncertainty in investigations of their own design. Cognition and Instruction, 22(2), 219–290. doi:10.1207/s1532690xci2202_3
  • Metz, K. E. (2008). Narrowing the gulf between the practices of science and the elementary school science classroom. The Elementary School Journal, 109(2), 138–161. doi:10.1086/590523
  • Metz, K. E. (2011). Disentangling robust developmental constraints from the instructionally mutable: Young children’s epistemic reasoning about a study of their own design. Journal of the Learning Sciences, 20(1), 50–110. doi:10.1080/10508406.2011.529325
  • Metz, K. E., Wilson, M., & Cardace, A. (in preparation). The learning progression model as a strategy for science education reform: Examination of its development, value and challenges.
  • National Research Council. (2012). A framework for K–12 science education: Practices, cross-cutting concepts, and core ideas. Washington D.C.: National Academy Press.
  • Nercessian, N. (1992). In the theoretician’s laboratory: Thought experimenting as mental modeling. In D. Hull, M. Forbes, & K. Okruhlik (Eds.), PSA 1992 (Vol. 2, pp. 291–301). East Lansing, MI: Philosophy of Science Association: East Lansing, MI.
  • NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, D.C.: National Academies Press. www.nextgenerationscience.org/next-generation-science-standards.
  • Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1, 117–175. doi:10.1207/s1532690xci0102_1
  • Piaget, J. (1978). Success and understanding. Cambridge, MA: Harvard University Press.
  • Popper, C. (1972). Conjecture and refutations: The growth of logical thinking (4th ed.). London, UK: Routledge, Kegan & Paul, Ltd: London, UK.
  • Reiser, B. J., Tabak, I., Sandoval, B., Smith, B. K., Steinmuller, F., & Leone, A. J. (2001). Strategic and conceptual scaffold for scientific inquiry in biology classrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 263–305). Mahwah, NJ: Lawrence Erlbaum.
  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms and structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304. doi:10.1207/s15327809jls1303_2
  • Samarapungavan, A. (1992). Children’s judgments on theory choice tasks: Scientific rationality in childhood. Cognition, 45(1), 1–32. doi:10.1016/0010-0277(92)90021-9
  • Schmidt, W. H., McKnight, C. C., & Raizen, S. A. (1997). A splintered vision: An investigation of U.S. science and mathematics education. Boston: Kluwer Academic Press.
  • Settlage, J. (1994). Conceptions of natural selection: A snapshot of the sense-making process. Journal of Research in Science Teaching, 31(5), 449–457. doi:10.1002/tea.v31:5
  • Shtulman, A. (2006). Qualitative differences between naïve and scientific theories of evolution. Cognitive Psychology, 52(2), 170–194. doi:10.1016/j.cogpsych.2005.10.001
  • Shtulman, A., Neal, C., & Linquist, G. (2016). Children’s ability to learn evolutionary explanations for biological adaptation. Early Education and Development, 27(8), 1222–1236. doi:10.1080/10409289.2016.1154418
  • Shtulman, A., & Schultz, L. (2008). The relation between essentialist beliefs and evolutionary reasoning. Cognitive Science, 32, 1049–1062. doi:10.1080/03640210801897864
  • Smith, J. P., diSessa, A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163. doi:10.1207/s15327809jls0302_1
  • Sophian, C., & Wood, A. (1997). Proportional reasoning in young children: The part and whole of it. Journal of Educational Psychology, 89(2), 309–317. doi:10.1037/0022-0663.89.2.309
  • Spiegel, A. N., Evans, E. M., Frazier, B., Hazel, A., Tare, M., Gram, W., & Diamond, J. (2012). Changing museum visitors’ conceptions of evolution. Evolution: Education and Outreach, 5(1), 43–61. doi:10.1007/s12052-012-0399-9
  • Spinillo, A. G., & Bryant, P. (1991). Children’s proportional judgments: The importance of half. Child Development, 62(3), 427–440.
  • Springer, K., & Keil, F. (1989). On the development of biologically-specific beliefs: The case of inheritance. Child Development, 60, 637–648. doi:10.2307/1130729
  • Stover, S. K., & Mabry, M. (2007). Influence of teleological and Lamarckian thinking of student understanding of natural selection. Bioscene: Journal of College Biology Teaching, 33(1), 11–18.
  • Tabak, I., & Reiser, B. J. (2008). Software-realized inquiry support for cultivating a disciplinary stance. Pragmatics and Cognition, 16 307–355.
  • Tinghitella, R. M. (2008). Rapid evolutionary change in a sexual signal: Genetic control of the mutation ‘flatwing’ that renders male crickets (Teleogryllus oceanicus) mute. Heredity, 100, 261–267. doi:10.1038/sj.hdy.6801069
  • To, C., Tenenbaum, H. R., & Hogh, H. (2017). Secondary students’ reasoning about evolution. Journal of Research in Science Teaching, 54(2), 247–273. doi:10.1002/tea.21347
  • Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychological Bulletin, 2, 105–110. doi:10.1037/h0031322
  • Ware, E. A., & Gelman, S. (2014). You get what you need: An examination of purpose-based inheritance reasoning in undergraduates, preschoolers, and biological experts. Cognitive Science, 38, 197–243. doi:10.1111/cogs.2014.38.issue-2
  • Zuk, M., Rotenberry, J. T., & Tinghitella, R. (2006). Silent night: Adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biology Letters, 2, 521–524. doi:10.1098/rsbl.2006.0539

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.