350
Views
5
CrossRef citations to date
0
Altmetric
Review

Hematoxylin in the 21st century

ORCID Icon

References

  • Aghaei F, Seifati SM, Nasirizadeh N. 2017. Development of a DNA biosensor for the detection of phenylketonuria based on a screen-printed gold electrode and hematoxylin. Anal Methods UK. 9:966–973.
  • Aghili Z, Nasirizadeh N, Divsalar A, Shoeibi S, Yaghmaei P. 2017. A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products. Biosens Bioelectron. 95:72–80.
  • Akita M, Murata E, Fujita K, Kaneko K. 1985. A new method using a modified Mayer’s hemalum at pH 6 for demonstrating mucous neck cells. Stain Technol. 60:261–264.
  • Alpdogan G, Zor SD. 2017. A new dispersive liquid–liquid microextraction method for preconcentration and determination of aluminum, iron, copper, and lead in real water samples by HPLC. J Int Assoc Offic Agric Chem Int. 100:1524–1530.
  • Bagheban-Shahri F, Niazi A. 2016. Chemometrics-enhanced simultaneous spectrophotometric determination of aluminum and bismuth with hematoxylin in vegetables and water using multivariate calibration. J Water Reuse Desal. 6:137–147.
  • Baker JR. 1962. Experiments on the action of mordants. 2. Aluminium-haematein. J Cell Sci. 3:493–517.
  • Bancroft E. 1814. Experimental researches concerning the philosophy of permanent colours; and the best means of producing them, by dyeing, calico printing, etc. Vol. 2. Philadelphia: T Dobson; p.258.
  • Beitollahi H, Salimi H. 2016. A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene. J Electrochem Soc. 163:H1157–H1164.
  • Beitollahi H, Salimi H, Ganjali MR. 2018a. Simultaneous voltammetric determination of droxidopa, acetaminophen, and tyrosine on hematoxylin and graphene oxide/ZnO nanocomposite-modified glassy carbon electrode. Ionics. 24:1487–1495.
  • Beitollahi H, Salimi H, Ganjali MR. 2018b. Selective determination of levodopa in the presence of vitamin b6, theophylline and guaifenesin using a glassy carbon electrode modified with a composite of hematoxylin and graphene/ZnO. Anal Sci. 34:867–873.
  • Bettinger C, Zimmermann HW. 1991. New investigations on hematoxylin, hematein, and hematein-aluminium complexes. Histochemistry. 96:215–228.
  • Červenka L. 2013. Determination of sulfide by hematoxylin multiwalled carbon nanotubes modified carbon paste electrode. Electroanalysis. 8:1967–1973.
  • Conn HJ. 1925. Biological stains: a handbook on the nature and uses of the dyes employed in the biological laboratory. Geneva (NY): Commission on Standardization of Biological Stains; p. 97.
  • Conn HJ. 1953. Biological stains, a handbook on the nature and uses of the dyes employed in the biological laboratory. 6th ed. Williams & Wilkins: Baltimore; p. 93, 191, 221, 283, 301, 322. 348.
  • Cooksey C. 2010. Hematoxylin and related compounds–an annotated bibliography concerning their origin, properties, chemistry, and certain applications. Biotech Histochem. 85:65–82.
  • Dapson RW, Horobin RW, Kiernan JA. 2019. Glossary of staining methods, reagents, immunostaining, terminology and eponyms. Biological Stain Commission, Inc; [accessed 2020 Jun 16]. https://biologicalstaincommission.org/bscglossary.html.
  • Dilgin DG, Gökçel Hİ. 2015. Photoelectrochemical glucose biosensor in flow injection analysis system based on glucose dehydrogenase immobilized on poly-hematoxylin modified glassy carbon electrode. Anal Methods UK. 7:990–999.
  • Dronsfield A, Edmonds J. 2001. The transition from natural to synthetic dyes (1856–1920). Edmonds, J, Little Chalfont; Buckingshamsire (England).
  • Ehrlich P. 1886. (untitled) Fragkasten Zeits fur wiss mikr und fur mikros tech 3: 150. Not seen, cited by Allison RT (1999) Haematoxylin—from the wood. J Clin Pathol. 52:527–528.
  • Gao F, Fan Y, Zhou B, Guo W, Jiang X, Shi J, Ren C. 2020. The functions and properties of cullin-5, a potential therapeutic target for cancers. Am J Transl Res. 12:618–632.
  • Gao HY, Wang R, Hou XL, Zhang LF, Xue WJ. 2009. Study on dyeing performance of natural hematoxylin pigment. Appl Chem Ind. 10:1404–1407.
  • Gao L, Gao H. 2014. Haematoxylin sorption onto yak hair: kinetic and thermodynamic studies. Color Technol. 130:21–26.
  • Gao LH, Gao HY, Yue J. 2012. Progress on synthesis of non-p-phenylenediamine hair dyes. China Surfact Deterg Cosmet. 42:371–377.
  • Kiernan JA. 2018. Does progressive nuclear staining with hemalum (alum hematoxylin) involve DNA, and what is the nature of the dye-chromatin complex? Biotech Histochem. 93:133–148.
  • Kim JY, Kim MI, Lee HH, Kim HL, Lee EJ, Lee YH, Hwang IK, Chun BW, Kang PW. 2020. Application of hematoxylin reagent for sperm cell separation in sexual crime evidence. Forens Sci Int. 307. article number 110114.
  • Lalor GC, Martin SL. 1959. Studies on haematoxylin and haematein, the colouring principle of logwood. I. Absorption spectra of pure compounds in various solvents and a spectrophotometric method of analysis for haematoxylin and haematein. J Soc Dyers Colour. 75:513–517.
  • Li Z, Li X, Jian M, Geleta GS, Wang Z. 2020. Two-dimensional layered nanomaterial-based electrochemical biosensors for detecting microbial toxins. Toxins. 12:20–43.
  • Llewellyn BD. 2009. Nuclear staining with alum hematoxylin. Biotech Histochem. 84:159–177.
  • Lu XC, Wang DL, Xu CX. 2012. Determination of hydroquinone in water by differential pulse voltammetry with polyhematoxylin/TiO2-graphene composite film modified glassy carbon electrode. Metal Anal. 32:13–19. (English abstract only).
  • Mayer P. 1891. Ueber das Farben mit Haematoxylin. Mitt Zool Stat Neapel. 10:170–186. Cited by Conn (1925) p. 142.
  • Nasirizadeh N, Zare HR. 2009. Differential pulse voltammetric simultaneous determination of noradrenalin and acetaminophen using a hematoxylin biosensor. Talanta. 80:656–663.
  • Nodoushan SM, Nasirizadeh N, Amani J, Halabian R, Fooladi AAI. 2019a. An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens Bioelect. 127:221–228.
  • Nodoushan SM, Nasirizadeh N, Kachuei R, Fooladi AAI. 2019b. Electrochemical detection of aflatoxin B1: an aptasensor prepared using graphene oxide and gold nanowires. Anal Methods UK. 11:6033–6042.
  • Obataya E, Minato K, Tomita B. 2001. Influence of moisture content on the vibrational properties of hematoxylin-impregnated wood. J Wood Sci. 47:317–321.
  • Ortega Saez N, Vanden Berghe I. 2011. Black dyed wool: production techniques, degradation and their effect on conservation. Dyes Hist Abstr. DHA30:48.
  • Ortega Saez N, Vanden Berghe I, Schalm O, De Munck B, Caen J. 2019. Material analysis versus historical dye recipes: ingredients found in black dyed wool from five Belgian archives (1650–1850). Conserv Património. 31:1–18.
  • Ren L, Zhang H, Bai X, Han X, Zhenguo MI. 2008. Hematoxylin’s cytocidal and apoptosis-inducing effects on human urinary bladder cancer cell-T24. Cancer Res Clin. 20:799–801.
  • Sheng LU. 2013. Influence of fixation and iron mordanting on color stability of silk fabric dyed with natural dye hematoxylin. J Text Res. 34:96–100. (English abstract only).
  • Sigma-Aldrich. 2020. Hematoxylin solution according to Mayer. [accessed 2020 Jun 10]. https://www.sigmaaldrich.com/catalog/product/sigma/51275.
  • Suzuki T, Yamamoto N, Nonaka M, Hashimoto Y, Matsuda G, Takeshima SN, Matsuyama M, Igarashi T, Miura T, Tanaka R, Kato S. 2009. Inhibition of human immunodeficiency virus type 1 (HIV-1) nuclear import via Vpr–Importin α interactions as a novel HIV-1 therapy. Biochem Biophys Res Com. 380:838–843.
  • Tang Y, He W, Wu Y, Cai R. 2019. Assessing the dyeing efficiency and irritation potentials of plant hair dyes: a multi-analytical in vitro approach. J Cosmet Derm. 18:1564–1574.
  • Tianzhu S, Fengjie Z, Lie’na D, Leilei P, Lei Z. 2008. A research on the wool dyeing technology with different dye mordants using the natural hematoxylin. Knit Indust. 2:53–55.
  • Titford M. 2005. The long history of hematoxylin. Biotech Histochem. 80:73–78.
  • Ueha R, Ueha S, Kondo K, Nishijima H, Yamasoba T. 2020. Effects of cigarette smoke on the nasal respiratory and olfactory mucosa in allergic rhinitis mice. Front Neurosci. 14. article no. 126.
  • USDA. 2020. U.S. Department of Agriculture, Agricultural Research Service. 1992–2016. Dr. Duke’s phytochemical and ethnobotanical databases. Home Page; [accessed 2020 Jun 10]. http://phytochem.nal.usda.gov/.
  • Wang H, Chen C. 2011. A study of hair dye using henna and haematoxylon campechianum dye. Sen’i Gakkaishi (J Soc Fiber Sci Technol, Japan). 67:273–277.
  • Wittekind D. 2003. Traditional staining for routine diagnostic pathology including the role of tannic acid. 1. Value and limitations of the hematoxylin-eosin stain. Biotech Histochem. 78:261–270.
  • Xu CX, Xiong XQ, Jin ZH, Yang JJ. 2011. Determination of lead and cadmium by differential pulse stripping voltammetry based on graphene oxide and hematoxylin modified glassy carbon electrode. J Xinyang Norm Univ (Natural Science Edition). 2. (Abstract only).
  • Yasunaga H, Takahashi A, Ito K, Ueda M, Urakawa H. 2012. Hair dyeing by using catechinone obtained from (+)-catechin. J Cosmet Dermatol Sci Appl. 2:158–163.
  • Yatagai M, Magoshi Y, Becker MA, Sano C, Ikuno H, Kohara N, Saito M. 2001. Degradation and color fading of silk fabrics dyed with natural dyes and mordants. In: Cardamone JM, Baker MT, Eds., Historic textiles, papers, and polymers in museums, Vol. 779, Chapter 7. Washington (DC): ACS Symposium Series; p. 86–97.
  • Ye X, Sun Y, Xu Y, Chen Z, Lu S. 2016. Integrated in silico-in vitro discovery of lung cancer-related tumor pyruvate kinase M2 (PKM2) inhibitors. Med Chem. 12:613–620.
  • Ying Y. 2015. Application and development of hematoxylin. Dye Finish Technol. 11:33–35. (English abstract only).
  • Zare HR, Nasirizadeh N. 2010. Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode. Sensor Actuat B-Chem. 143:666–672.
  • Zor SD, Alpdogan G. 2016. Al (III), Cu (II), Co (II), Pb (II), Mn (II), and Fe (III) determinations in various samples by FAAS after solid phase extraction. J Turk Chem Soc A. 3:145–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.