339
Views
1
CrossRef citations to date
0
Altmetric
Articles

Differential expression of microRNA between triple negative breast cancer patients of African American and European American descent

, , , , , , & show all

References

  • Ali Ahmed E, Abd El-Basit SA, Mohamed MA, Swellam M. 2020. Clinical role of MiRNA 29a and MiRNA 335 on breast cancer management: their relevance to MMP2 protein level. Arch Physiol Biochem. 1–8. doi:10.1080/13813455.2020.1749085.
  • Arner P, Kulyté A. 2015. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol. 11:276–2015. doi:10.1038/nrendo.2015.25.
  • Banegas MP, Li CI. 2012. Breast cancer characteristics and outcomes among Hispanic Black and Hispanic White women. Breast Cancer Res Treat. 134:1297–1304. doi:10.1007/s10549-012-2142-1.
  • Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA. 2003. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 348:891–899. doi:10.1056/NEJMoa021735.
  • Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Ørntoft TF, Andersen CL, Dobbelstein M. 2008. p53-Responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 68:10094–10104. doi:10.1158/0008-5472.CAN-08-1569.
  • Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S. 2006. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. J Am Med Assoc. 295:2492–2502. doi:10.1001/jama.295.21.2492.
  • Castelao J, Yuan J, Gago-Dominguez M, Yu M, Ross R. 2000. Non-steroidal anti-inflammatory drugs and bladder cancer prevention. Br J Cancer. 82:1364–1369. doi:10.1054/bjoc.1999.1106.
  • Chen L, Song Y, Lu Y, Zheng W, Ma W, Zhang C. 2016. miR-335 inhibits cell proliferation, migration and invasion in HeLa cervical cancer cells. Int J Clin Exp Pathol. 9:10351–10362.
  • Cui W, Zhang Y, Hu N, Shan C, Zhang S, Zhang W, Zhang X, Ye L. 2010. miRNA-520b and miR-520e sensitize breast cancer cells to complement attack via directly targeting 3′ UTR of CD46. Cancer Biol Ther. 10:232–241. doi:10.4161/cbt.10.3.12277.
  • Danforth Jr DN Jr. 2013. Disparities in breast cancer outcomes between Caucasian and African American women: a model for describing the relationship of biological and nonbiological factors. Breast Cancer Res. 15:1–15. doi:10.1186/bcr3429.
  • Deshmukh SK, Srivastava SK, Tyagi N, Ahmad A, Singh AP, Ghadhban AA, Dyess DL, Carter JE, Dugger K, Singh S. 2017. Emerging evidence for the role of differential tumor microenvironment in breast cancer racial disparity: a closer look at the surroundings. Carcinogenesis. 38:757–765. doi:10.1093/carcin/bgx037.
  • Dietze EC, Sistrunk C, Miranda-Carboni G, O’regan R, Seewaldt VL. 2015. Triple-negative breast cancer in African American women: disparities versus biology. Nat Rev Cancer. 15:248–254. doi:10.1038/nrc3896.
  • Dong Y, Liu Y, Jiang A, Li R, Yin M, Wang Y. 2018. MicroRNA-335 suppresses the proliferation, migration, and invasion of breast cancer cells by targeting EphA4. Mol Cell Biochem. 439:95–104. doi:10.1007/s11010-017-3139-1.
  • Du X, Fan W, Chen Y. 2018. microRNA-520f inhibits hepatocellular carcinoma cell proliferation and invasion by targeting TM4SF1. Gene. 657:30–38. doi:10.1016/j.gene.2018.03.003.
  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R. 2006. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3:87–98. doi:10.1016/j.cmet.2006.01.005.
  • Gao X-L, Li J-Q, Dong Y-T, Cheng E-J, Gong J-N, Qin Y-L, Huang Y-Q, Yang J-J, Wang S-J, An D-D. 2018. Upregulation of microRNA-335-5p reduces inflammatory responses by inhibiting FASN through the activation of AMPK/ULK1 signaling pathway in a septic mouse model. Cytokine. 110:466–478. doi:10.1016/j.cyto.2018.05.016.
  • Garza-Morales R, Gonzalez-Ramos R, Chiba A, de Oca-Luna RM, McNally L, McMasters K, Gomez-Gutierrez J. 2018. Temozolomide enhances triple-negative breast cancer virotherapy in vitro. Cancers. 10:144. doi:10.3390/cancers10050144.
  • Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G. 2006. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA. 103:5078–5083. doi:10.1073/pnas.0600587103.
  • Greten FR, Grivennikov SI. 2019. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 51:27–41. doi:10.1016/j.immuni.2019.06.025.
  • Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell. 140:883–899. doi:10.1016/j.cell.2010.01.025.
  • Guo L, Zhang Y, Zhang L, Huang F, Li J, Wang S. 2016. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer. Tumor Biol. 37:115–125. doi:10.1007/s13277-015-4374-2.
  • Hackler L, Masuda T, Oliver VF, Merbs SL, Zack DJ. 2012. Use of laser capture microdissection for analysis of retinal mRNA/miRNA expression and DNA methylation. Retinal development. Springer: Totowa, NJ; p. 289–304.
  • Han Y, Moore JX, Langston M, Fuzzell L, Khan S, Lewis MW, Colditz GA, Liu Y. 2019. Do breast quadrants explain racial disparities in breast cancer outcomes? Cancer Causes Contr. 30:1171–1182. doi:10.1007/s10552-019-01222-x.
  • Heyn H, Engelmann M, Schreek S, Ahrens P, Lehmann U, Kreipe H, Schlegelberger B, Beger C. 2011. MicroRNA miR‐335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int J Cancer. 129:2797–2806. doi:10.1002/ijc.25962.
  • Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, Cronin KA. 2014. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 106:dju055. doi:10.1093/jnci/dju055.
  • Huang J, Egger M, Grizzle W, McNally L. 2013a. MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech Histochem. 88:397–402. doi:10.3109/10520295.2012.762460.
  • Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS. 2013b. miRNA-95 mediates radio-resistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 73:6972–6986. doi:10.1158/0008-5472.CAN-13-1657.
  • Hughes L, Ruth K, Rebbeck TR, Giri VN. 2013. Genetic variation in IL-16 miRNA target site and time to prostate cancer diagnosis in African American men. Prost Cancer Prost Dis. 16:308–314. doi:10.1038/pcan.2013.36.
  • Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M. 2005. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. doi:10.1158/0008-5472.CAN-05-1783.
  • Keklikoglou I, Koerner C, Schmidt C, Zhang J, Heckmann D, Shavinskaya A, Allgayer H, Gückel B, Fehm T, Schneeweiss A. 2012. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene. 31:4150–4163. doi:10.1038/onc.2011.571.
  • Kerr EH, Frederick PJ, Egger ME, Stockard CR, Sellers J, DellaManna D, Oelschlager DK, Amm HM, Eltoum I-E, Straughn JM, Buchsbaum DJ, Grizzle WE, McNally LR. 2013. Lung resistance-related protein (LRP) expression in malignant ascitic cells as a prognostic marker for advanced ovarian serous carcinoma. Ann Surg Onc. 20:3059–3065. doi:10.1245/s10434-013-2878-9.
  • Lee S, Rauch J, Kolch W. 2020. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 21:1102–1130. doi:10.3390/ijms21031102.
  • Li E, Ji P, Ouyang N, Zhang Y, Wang XY, Rubin DC, Davidson NO, Bergamaschi R, Shroyer KR, Burke S. 2014. Differential expression of miRNAs in colon cancer between African and Caucasian Americans: implications for cancer racial health disparities. Int J Oncol. 45:587–594. doi:10.3892/ijo.2014.2469.
  • Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, Guenther SM, O’Leary JJ, Sheils O. 2007. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol. 7:1–6. doi:10.1186/1472-6750-7-36.
  • Liang Z, Bian X, Shim H. 2014. Inhibition of breast cancer metastasis with microRNA-302a by downregulation of CXCR4 expression. Breast Cancer Res Treat. 146:535–542. doi:10.1007/s10549-014-3053-0.
  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433:769–773. doi:10.1038/nature03315.
  • Liu X, Wang F, Tian L, Wang T, Zhang W, Li B, Bai Y-A. 2016. MicroRNA-520b affects the proliferation of human glioblastoma cells by directly targeting cyclin D1. Tumor Biol. 37:7921–7928. doi:10.1007/s13277-015-4666-6.
  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA. 2005. MicroRNA expression profiles classify human cancers. Nature. 435:834–838. doi:10.1038/nature03702.
  • Lu K, Liu C, Tao T, Zhang X, Zhang L, Sun C, Wang Y, Chen S, Xu B, Chen M. 2015. MicroRNA- 19a regulates proliferation and apoptosis of castration-resistant prostate cancer cells by targeting BTG1. FEBS Lett. 589:1485–1490. doi:10.1016/j.febslet.2015.04.037.
  • Ma W, Ma C, Li X, Zhang Y. 2016. Examining the effect of gene reduction in miR-95 and enhanced radiosensitivity in non-small cell lung cancer. Cancer Gene Ther. 23:66–71. doi:10.1038/cgt.2016.2.
  • MacCuaig WM, Fouts BL, McNally MW, Grizzle WE, Chuong P, Samykutty A, Mukherjee P, Li M, Jasinski JB, Behkam B, McNally LR. 2021. Active targeting significantly outperforms nanoparticle size in facilitating tumor-specific uptake in orthotopic pancreatic cancer. ACS Appl Mater Interf. 13:49614–49630. doi:10.1021/acsami.1c09379.
  • MacFarlane L-A, Murphy P. 2010. MicroRNA: biogenesis, function and role in cancer. Curr Genom. 11:537–561. doi:10.2174/138920210793175895.
  • Martin DN, Boersma BJ, Yi M, Reimers M, Howe TM, Yfantis HG, Tsai YC, Williams EH, Lee DH, Stephens RM. 2009. Differences in the tumor microenvironment between African American and European American breast cancer patients. PloS One. 4:e4531–e4531. doi:10.1371/journal.pone.0004531.
  • Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K. 1999. Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucl Acids Res. 27:4436–4443. doi:10.1093/nar/27.22.4436.
  • McNally LR, Manne U, Grizzle WE. 2013. Post-transcriptional processing of genetic information and its relation to cancer. Biotech Histochem. 88:365–372. doi:10.3109/10520295.2012.730152.
  • Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F, Vandesompele J. 2008. High- throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucl Acids Res. 36:e143–e143. doi:10.1093/nar/gkn725.
  • Miller B, Chalfant H, Thomas A, Wellberg E, Henson C, McNally MW, Grizzle WE, Jain A, McNally LR. 2021. Diabetes, obesity, and inflammation: impact on clinical and radiographic features of breast cancer. Int J Mol Sci. 22:2757. doi:10.3390/ijms22052757.
  • Morris GJ, Mitchell EP. 2008. Higher incidence of aggressive breast cancers in African American women: a review. J Natl Med Assoc. 100:698–702. doi:10.1016/S0027-9684(15)31344-4.
  • Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. 2006. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 8:278–284. doi:10.1038/ncb1373.
  • Okabe Y, Medzhitov R. 2016. Tissue biology perspective on macrophages. Nat Immunol. 17:9–17. doi:10.1038/ni.3320.
  • Ooi SL, Martinez ME, Li CI. 2011. Disparities in breast cancer characteristics and outcomes by race/ethnicity. Breast Cancer Res Treat. 127:729–738. doi:10.1007/s10549-010-1191-6.
  • Ritter B, Greten FR. 2019. Modulating inflammation for cancer therapy. J Exp Med. 216:1234–1243. doi:10.1084/jem.20181739.
  • Shi XB, Tepper CG, White RW. 2008. MicroRNAs and prostate cancer. J Cell Mol Med. 12:1456–1465. doi:10.1111/j.1582-4934.2008.00420.x.
  • Sochor M, Basova P, Pesta M, Dusilkova N, Bartos J, Burda P, Pospisil V, Stopka T. 2014. Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BioMed Cent Cancer. 14:448.
  • Song Q, Song J, Wang Q, Ma Y, Sun N, Ma J, Chen Q, Xia G, Huo Y, Yang L. 2016. miR‐548d‐ 3p/TP 53 BP 2 axis regulates the proliferation and apoptosis of breast cancer cells. Cancer Med. 5:315–324. doi:10.1002/cam4.567.
  • Sonkoly E, Pivarcsi A. 2009. MicroRNAs in inflammation. Int Rev Immunol. 28:535–561. doi:10.3109/08830180903208303.
  • Srinivasan M, Sedmak D, Jewell S. 2002. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 161:1961–1971. doi:10.1016/S0002-9440(10)64472-0.
  • Theodore SC, Davis M, Zhao F, Wang H, Chen D, Rhim J, Dean-Colomb W, Turner T, Ji W, Zeng G. 2014. MicroRNA profiling of novel African American and Caucasian prostate cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltranferase 1. Oncotarget. 5:3512–3525. doi:10.18632/oncotarget.1953.
  • Theodore SC, Rhim JS, Turner T, Yates C. 2010. MiRNA 26a expression in a novel panel of African American prostate cancer cell lines. Ethn Dis. 20:96–100.
  • Thomas A, Rhoads A, Pinkerton E, Schroeder MC, Conway KM, Hundley WG, McNally LR, Oleson J, Lynch CF, Romitti PA. 2019. Incidence and survival among young women with stage I–III breast cancer: SEER 2000–2015. J Natl Cancer Inst Cancer Spect. 3: pkz040.
  • Todoric J, Antonucci L, Karin M. 2016. Targeting inflammation in cancer prevention and therapy. Cancer Prevent Res. 9:895–905. doi:10.1158/1940-6207.CAPR-16-0209.
  • Trinchieri G. 2012. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Ann Rev Immunol. 30:677–706. doi:10.1146/annurev-immunol-020711-075008.
  • van Kampen JG, van Hooij O, Jansen CF, Smit FP, van Noort PI, Schultz I, Schaapveld RQ, Schalken JA, Verhaegh GW. 2017. miRNA-520f reverses epithelial-to-mesenchymal transition by targeting ADAM9 and TGFBR2. Cancer Res. 77:2008–2017. doi:10.1158/0008-5472.CAN-16-2609.
  • Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, Stephens RM, Caporaso NE, Loffredo CA, Ambs S. 2008. Tumor immunobiological differences in prostate cancer between African American and European American men. Cancer Res. 68:927–936. doi:10.1158/0008-5472.CAN-07-2608.
  • Wang B-D, Ceniccola K, Yang Q, Andrawis R, Patel V, Ji Y, Rhim J, Olender J, Popratiloff A, Latham P. 2015. Identification and functional validation of reciprocal microRNA-mRNA pairings in African American prostate cancer disparities. Clin Cancer Res. 21:4970–4984. doi:10.1158/1078-0432.CCR-14-1566.
  • Wang F, Li T, Zhang B, Li H, Wu Q, Yang L, Nie Y, Wu K, Shi Y, Fan D. 2013. MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem Biophys Res Commun. 434:688–694. doi:10.1016/j.bbrc.2013.04.010.
  • Wang S, Wang L, Zhu T, Gao X, Li J, Wu Y, Zhu H. 2010. Improvement of tissue preparation for laser capture microdissection: application for cell type-specific miRNA expression profiling in colorectal tumors. BioMed Cent Genom. 11:163.
  • Wei Z-J, Tao M-L, Zhang W, Han G-D, Zhu Z-C, Miao Z-G, Li J-Y, Qiao Z-B. 2015. Up- regulation of microRNA-302a inhibited the proliferation and invasion of colorectal cancer cells by regulation of the MAPK and PI3K/Akt signaling pathways. Int J Clin Exp Pathol. 8:4481–4491.
  • Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, Brant SR, Chakravarti S, Kwon JH. 2008. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2α. Gastroenterology. 135:1624–1635. doi:10.1053/j.gastro.2008.07.068.
  • Xiao J, Li G, Zhou J, Wang S, Liu D, Shu G, Zhou J, Ren F. 2018. MicroRNA-520b functions as a tumor suppressor in colorectal cancer by inhibiting defective in cullin neddylation 1 domain containing 1 (DCUN1D1). Oncol Res Preclin Clin Cancer Ther. 26:593–604.
  • Xu X-M, Wang X-B, Chen M-M, Liu T, Li Y-X, Jia W-H, Liu M, Li X, Tang H. 2012. MicroRNA- 19a and-19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett. 322:148–158. doi:10.1016/j.canlet.2012.02.038.
  • Yan-Chun L, Hong-Mei Y, Zhi-Hong C, Qing H, Yan-Hong Z, Ji-Fang W. 2017. MicroRNA-192-5p promote the proliferation and metastasis of hepatocellular carcinoma cell by targeting SEMA3A. Appl Immunohistochem Mol Morphol. 25:251–260. doi:10.1097/PAI.0000000000000296.
  • Yang X-D, Xu X-H, Zhang S-Y, Wu Y, Xing C-G, Ru G, Xu H-T, Cao J-P. 2015. Role of miR-100 in the radio resistance of colorectal cancer cells. Am J Cancer Res. 5:545–559.
  • Zhang G-M, Bao C-Y, Wan F-N, Cao D-L, Qin X-J, Zhang H-L, Zhu Y, Dai B, Shi G-H, Ye D-W. 2015. MicroRNA-302a suppresses tumor cell proliferation by inhibiting AKT in prostate cancer. PLoS One. 10:e0124410. doi:10.1371/journal.pone.0124410.
  • Zhang W, Kong G, Zhang J, Wang T, Ye L, Zhang X. 2012. MicroRNA-520b inhibits growth of hepatoma cells by targeting MEKK2 and cyclin D1. PloS One. 7:e31450. doi:10.1371/journal.pone.0031450.
  • Zhao G, Wang T, Huang Q-K, Pu M, Sun W, Zhang Z-C, Ling R, Tao K-S. 2016a. MicroRNA- 548a-5p promotes proliferation and inhibits apoptosis in hepatocellular carcinoma cells by targeting Tg737. World J Gastroenterol. 22:5364–5373. doi:10.3748/wjg.v22.i23.5364.
  • Zhao L, Wang Y, Jiang L, He M, Bai X, Yu L, Wei M. 2016b. MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein (P-gp) by targeting MAP/ERK kinase 1 (MEKK1). J Exp Clin Cancer Res. 35:1–14. doi:10.1186/s13046-016-0300-8.
  • Zhou X, Li X, Ye Y, Zhao K, Zhuang Y, Li Y, Wei Y, Wu M. 2014. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat Commun. 5:1–14. doi:10.1038/ncomms4619.
  • Zhu L, Chen L, Shi C-M, Xu G-F, Xu -L-L, Zhu -L-L, Guo X-R, Ni Y, Cui Y, Ji C. 2014. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochem Biophys. 68:283–290. doi:10.1007/s12013-013-9708-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.