560
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Advancing cancer drug development through precision medicine and innovative designs

, &
Pages 229-244 | Received 15 Jan 2017, Accepted 30 Oct 2017, Published online: 27 Nov 2017

References

  • Allen, G. (2017). Statistical data integration: Challenges and opportunities. Statistical Modelling 17(4–5):332–337.
  • Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57(No. 1):pp. 289-300.
  • Bersanelli, M., Mosca, E., Remondini, D., Giampieri, E., Sala, C., Castellani, G., Milanesi, L. (2016). Methods for the integration of multi-omics data: Mathematical aspects. BMC Bioinformatics 17(Suppl 2):S15.
  • Bi, R., Liu, P. (2016). Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments. BMC Bioinformatics 17:146.
  • Biomarkers Definition Working Group. (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Therapeutics 69:89–95.
  • Breiman, L., Friedman, J., Olshen, R., Stone, C. (1984). Classification and Regression Trees. New York, NY: Chapman & Hall.
  • Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., … McArthur, G. A. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine 364(26):2507–2516.
  • Chen, C., Li, N., Shentu, Y., Pang, L., Beckman, R. A. (2016). Adaptive informational design of confirmatory phase iii trials with an uncertain biomarker effect to improve the probability of success. Statistics in Biopharmaceutical Research 10.1080/19466315.2016.1173582.
  • Collins, F. S., Varmus, H. (2015). A new initiative on precision medicine. The New England Journal of Medicine 372(9):793–795.
  • Dolsten, M., Søgaard, M. (2012). Precision medicine: An approach to R&D for delivering superior medicines to patients. Clinical and Translational Medicine 1:7.
  • European Medicines Agency (EMA). Giotrib (afatinib). EMA http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002280/human_med_001698.jsp&mid=WC0b01ac058001d124 (2016).
  • Fadista, J., Manning, A., Florez, J., Groop, L. (2016). The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. European Journal of Human Genetics 24:1202–1205.
  • Fleming, T. R., DeMets, D. L. (1996). Surrogate end points in clinical trials: Are we being misled? Annals of Internal Medicine 125(7):605–613.
  • Freidlin, B., Jiang, W., Simon, R. (2010). The cross-validated adaptive signature design. Clin Cancer Res 16(2):691–698.
  • Freidlin, B., Korn, E. L., Gray, R. (2014). Marker sequential test (MaST) design. Clinical Trials 11(1):19–27.
  • Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33:1–22.
  • George, S., Wang, X. (2012). Targeted Clinical Trials. D. Harrington. ( eds)., Designs for Clinical Trials. Applied Bioinformatics and Biostatistics in Cancer Research. Springer:New York, NY.
  • Gosho, M., Nagashima, K., Sato, Y. (2012). Study designs and statistical analyses for biomarker research. Sensors 12:8966–8986.
  • Hong, E. P., Park, J. W. (2012). Sample size and statistical power calculation in genetic association studies. Genomics & Informatics 10(2):117–122.
  • Jenkins, M., Stone, A., Jennison, C. (2011). An adaptive seamless phase II/III design for oncology trials with subpopulation selection using correlated survival endpoint. Pharmaceutical Statistics 10(4):347–356.
  • Jiang, W., Yu, W. (2016). Power estimation and sample size determination for replication studies of genome-wide association studies. BMC Genomics 17(Suppl 1):3.
  • Johnstone, I., Titterington, D. (2009). Statistical challenges of high-dimensional data. Phil Transactions R Social A 367:4237–4253.
  • Jung, S. (2013). Sample size calculation for microarray studies with survival endpoints. Journal of Computer Science and Systems Biology 2013(6):3.
  • Jung, S., Young, S. (2012). Power and sample size calculation for microarray studies. Journal of Biopharmaceutical Statistics 22(1):30–42.
  • Katz, R. (2004). Biomarkers and surrogate Markers: An FDA perspective. NeuroRx : the Journal of the American Society for Experimental NeuroTherapeutics 1(2):189–195.
  • Klein, R. J. (2007). Power analysis for genome-wide association studies. BMC Genetics 8:58.
  • Lee, S., Wu, M. C., Lin, X. (2012). Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13:762–775.
  • Liaw, A., Wiener, M. (2002). Classification and regression by randomForest. R News 2(3):18–22.
  • Liu, P., Hwang, J. T. G. (2007). Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics (Oxford, England) 23(6):739–746.
  • Lowe, W. L., Reddy, T. E. (2015). Genomic approaches for understanding the genetics of complex disease. Genome Research 25:1432–1441.
  • Mehta, C., Gao, P., Bhatt, D., Harrington, R., Skerjanec, S., Ware, J. (2009). Optimizing Trial Design: Sequential, Adaptive, and Enrichment Strategies, Circulation 119:597–605.
  • Meienberg, J., Bruggmann, R., Oexle, K., Matyas, G. (2016). Clinical sequencing. Is WGS the Better WES? Human Genetics 135:359–362.
  • Morgan, P., Van Der Graaf, P. H., Arrowsmith, J., Feltner, D. E., Drummond, K. S., Wegner, C. D., Street, S. D. (2012). Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today 17:419–424.
  • Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M. et al. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. The New England Journal of Medicine 35127:2817–2826.
  • Panagiotou, O. A., Ioannidis, J. P. (2012). Genome-wide significance project. What Should the Genome-Wide Significance Threshold Be? Empirical Replication of Borderline Genetic Associations. Int J Epidemiol. 41(1):273–286.
  • Park, J. H., Wacholder, S., Gail, M. H., Peters, U., Jacobs, K. B., Chanock, S. J. et al. (2010). Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nature Genetics 42:570–575.
  • Pe’er, I., Yelensky, R., Altshuler, D., Daly, M. (2008). Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genetic Epidemiology 32:381–385.
  • Pineda, S., Real, F. X., Kogevinas, M., Carrato, A., Chanock, S. J., Malats, N. et al. (2015). Integration analysis of three omics data using penalized regression methods: An application to bladder cancer. PLoS Genetics 11:12.
  • Saccenti, E., Timmerman, M. E. (2016). Approaches to sample size determination for multivariate data: Applications to pca and pls-da of omics data. Journal of Proteome Research 15:2379–2393.
  • Shabalin, A., Tjelmeland, H., Fan, C., Perou, C., Nobel, A. (2008). Merging two gene-expression studies via cross-platform normalization. Bioinformatics (Oxford, England) 24(9):1154–1160.
  • Spencer, C. C., Su, Z., Donnelly, P., Marchini, J. (2009). Designing genome-wide association studies: Sample size, power, imputation, and the choice of genotyping chip. PLoS Genetics 5:e1000477.
  • Shyr, D., Liu, Q. (2013). Next generation sequencing in cancer research and clinical application. Biological Procedures Online 15(1):4.
  • Simon, R., Maitournam, A. (2004). Evaluating the efficiency of targeted designs for randomized clinical trials. Clinical Cancer Research 20:6759–6763.
  • Simon, R., Wang, S. J. (2006). Use of genomic signatures in therapeutics development in oncology and other diseases. The Pharmacogenomics Journal 6(3):166–173.
  • Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society 64:479–498.
  • Teng, Z., Liu, Y., Wang, J., Hua, Z., Chang, M. (2016). Oncology Trials: Development strategy. To Appear in the 4th Edition of Encyclopedia of Biopharmaceutical Statistics. Boca Raton, FL: CRC Press.
  • TESARO. (2016). TESARO’s Niraparib Significantly Improved Progression-Free Survival for Patients With Ovarian Cancer in Both Cohorts of the Phase 3 NOVA Trial. http://ir.tesarobio.com/news-releases/news-release-details/tesaros-niraparib-significantly-improvedprogression-free
  • Thomas, D.W., Burns, J., Audette, J., Carroll, A., Dow-Hygelund, C., Hay, M. (2016). Clinical Development Success Rates 2006–2015. June 2016. Available at: https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf
  • Thompson, J., Tan, J., Greene, C. (2016). Cross-platform normalization of microarray and RNA-seq data for machine learning applications. Peer Journal 4:e1621.
  • US Food and Drug Administration (FDA). FDA approves afatinib. FDA http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm360574. htm (2016). 18. Lindeman, N. I.
  • Wang, J., Chow, S., Chang, M. (2016). Biomarker: Driven adaptive design for precision medicine. Journal Translational Biomarkers Diagnosis 2(1):15–24.
  • Wang, S., O’Neill, R., Hung, H. (2007). Approaches to evaluation of treatment effect in randomized clinical trials with genomic subset. Pharmaceutical Statistics 6(3):227–244.
  • Wu, Z., Zhao, H. (2009). Statistical power of model selection strategies for genome-wide association studies. PLoS Genetics 5:e1000582.
  • Yang, B., Zhou, Y., Zhang, L., Cui, L. (2015). Enrichment design with patient population augmentation. Contemporary Clinical Trials 42:60–67.
  • Wetterstrand, K. A. (2016). DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: www.genome.gov/sequencingcostsdata. Accessed 12/ 23/2016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.