386
Views
6
CrossRef citations to date
0
Altmetric
Articles

Acclimatization of Terminalia Arjuna saplings to salt stress: characterization of growth, biomass and photosynthetic parameters

, , , &

References

  • Abbruzzese, G., Beritognolo, I., Muleo, R., Piazzai, M., Sabatti, M., Scarascia Mugnozza, G., & Kuzminsky, E. (2009). Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental & Experimental Botany, 66, 381–388. doi:10.1016/j.envexpbot.2009.04.008
  • Albuquerque, M. B., (2004). Efeito do estresse hídrico e salino na germinac¸ ão, crescimento inicial e relac¸ ões hídricas da mangabeira (Hancornia speciosa Gomes). Dissertac¸ ão de Mestrado em Botânica, UFRPE, Recife, 78 p.
  • Atia, A., Hamed, K. B., Debez, A., & Abdely, C. (2006). Salt and seawater effects on the germination of Crithmum maritimum. In M. Ozturk, Y. Waisel, M. A. Khan, G. Gork, & B. Verlag (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 29–33). Basel, Switzerland: Springer.
  • Batool, N., Shahzad, A., Ilyas, N., & Noor, T. (2014). Plants and Salt stress. International Journal of Agriculture and Crop Sciences, 7, 582–589.
  • Beritognolo, I., Piazzai, M., Benucci, S., Kuzminsky, E., Sabatti, M., Scarascia Mugnozza, G., & Muleo, R. (2007). Functional characterisation of three Italian Populus alba. L genotypes under salinity stress. Trees, 21, 465–477. doi:10.1007/s00468-007-0139-x
  • Bethke, P. C., & Drew, M. C. (1992). Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity. Plant Physiology, 99, 219–226. doi:10.1104/pp.99.1.219
  • Bray, E. A., Bailey-Serres, J., & Weretilnyk, E. (2000). Responses to abiotic stresses. In B. B. Buchana, W. Gruissem, & R. L. Jones (Eds.), American Society of Plant Biologists (pp. 1158–1203). Rockville, USA: American Society of Plant Biologists.
  • Cha-Um, S., & Kirdmanee, C. (2008). Assessment of salt tolerance in Eucalyptus, rain tree and Thai neem under laboratory and field conditions. Pakistan Journal of Botany, 40, 2041–2051.
  • Chavez, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560. doi:10.1093/aob/mcn125
  • Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 437–448. doi:10.2135/cropsci2005.0437
  • Da Silva, E. C., Nogueira, R. J. M. C., de Araujo, F. P., de Melo, N. F., & Neto, A. D. A. (2008). Physiological responses to salt stress in young umbu plants. Environmental & Experimental Botany, 63, 147–157. doi:10.1016/j.envexpbot.2007.11.010
  • Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. Plant Journal, 4, 215–223.
  • Dias, N. S., Gheyi, H. R., & Duarte, S. N. (2003). Prevenção, manejo e recuperac¸ ão dos solos afetados por sais. Série Didática n 13. ESALQ/USP/LER, Piracicaba.
  • Ding, M., Hou, P., Shen, X., Wang, M., Deng, S., Sun, J., … Chen, S. (2010). Salt induced expression of genes related to Na?/K? and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Molecular Biology, 73, 251–269. doi:10.1007/s11103-010-9646-z
  • Duan, D., Liu, X., Feng, F., & Li, C. (2003). Effects of salinities on seed germination of halophytes Suaeda salsa. Chinese Agricultural Science Bulletin, 19, 168–172.
  • Evlard, A., Sergeant, K., Ferrandis, S., Printzb, B., Renaut, J., Guignard, C., … Campanella, B. (2014). Physiological and proteomic responses of different willow Clones (Salix fragilis x alba) exposed to dredged sediment contaminated by heavy metals. International Journal of Phytoremediation, 16, 1148–1169. doi:10.1080/15226514.2013.821448
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C-3 plants. Plant Biology, 6, 269–279. doi:10.1055/s-2004-820867
  • Galmés, J., Medrano, H., & Flexas, J. (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175, 81–93. doi:10.1111/nph.2007.175.issue-1
  • Gao, H. J., Yang, H. Y., Bai, J. P., Liang, X. Y., Lou, Y., Zhang, J. L., … Chen, Y. (2014). Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Frontiers in Plant Science, 5, 1–14.
  • Gorai, M., Ennajeh, M., Khemira, H., & Neffati, M. (2010). Combined effect of NaCl salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmite saustralis plants. Flora, 205, 462–470. doi:10.1016/j.flora.2009.12.021
  • Grewal, H. S. (2010). Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management, 97, 148–156. doi:10.1016/j.agwat.2009.09.002
  • Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102. doi:10.1023/A:1005703923347
  • Harfouche, A., Meilan, R., & Altman, A. (2014). Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology, 34, 1181–1198. doi:10.1093/treephys/tpu012
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., … Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, 6, 1–12.
  • Hosseini, M. K., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigor during germination of soyabean seeds. Seed Science & Technology, 31, 715–725. doi:10.15258/sst.2003.31.3.20
  • Intergovernmental Panel on Climate Change. (2013). Climate change 2013 – the physical science basis. Cambridge: Cambridge University Press. ISBN 9781107661820
  • Isla, R., Guillen, M., & Aragüés, R. (2014). Response of five tree species to salinity and waterlogging shoot and root biomass and relationships with leaf and root ion concentrations. Agroforest Systems, 88, 461–477. doi:10.1007/s10457-014-9705-6
  • Kapoor, A. S. (2014). Managing groundwater for irrigated agriculture – The relevance of biodrainage model (pp. p 341). Jaipur, India: Rawat Publications.
  • Khasa, P. D., Hambling, B., Kernaghan, G., Fung, M., & Ngimbi, E. (2002). Genetic variability in salt tolerance of selected boreal woody seedlings. Forest Ecology & Management, 165, 257–269. doi:10.1016/S0378-1127(01)00623-5
  • Lautner, S. (2013). Wood formation under drought stress and salinity. In J. Fromm (Ed.), Cellular aspects of wood formation (pp. 187–202). Berlin, Germany: Springer.
  • Lawson, T. (2009). Guard cell photosynthesis and stomatal function. New Phytologist, 181, 13–34. doi:10.1111/j.1469-8137.2008.02685.x
  • Lawson, T., Kramer, D. M., & Raines, C. A. (2012). Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Current Opinion in Biotechnology, 23, 215–220. doi:10.1016/j.copbio.2011.12.012
  • Liu, X., Qiao, H., Li, W., Tadano, T., & Khan, M. A. (2006). Comparative effect of NaCl and seawater on seed germination of Suaeda salsa and Atriplex centralasiatica. In M. Ozturk, Y. Waisel, M. A. Khan, & G. Gork (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 45–53). Basel, Switzerland: Birkhauser.
  • Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and choloerohyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4, 580–585.
  • Manjunatha, M. V., Hebbara, M., Patil, S. G., Kuligod, V. B., & Minhas, P. S. (2005). Effect of trees alone or with grasses on halting canal seepage and shallow water table control in saline vertisols. Journal of the Indian Society of Soil Science, 53, 254–257.
  • Marcar, N. E., Crawford, D. F., Saunders, A., Matheson, A. C., & Arnold, R. A. (2002). Genetic variation among and within provenances and families of Eucalyptus grandis. In W. Hill & E. Globulus Labill (Eds..), globulus seedlings in response to salinity and waterlogging (subsp, Vol. 162, pp. 231–249). Forest Ecology & Management.
  • McGaw, L. J., Rabe, T., Sparg, S. G., Jäger, A. K., Eliff, J. N., & Staden, J. V. (2001). An investigation on the biological activity of Combretum spp. Journal of Ethnopharmacology, 75, 45–50. doi:10.1016/S0378-8741(00)00405-0
  • Mguis, K., Albouchi, A., Khadhri, A., Abassi, M., Yakoubi-Tej, M., Mahjoub, A., … Brahim, N. B. (2012). Adjustments in leaf water relations of wild wheat relative Aegilops geniculata Roth. And wheat (Triticum durum Desf.) plants grown in a salinity gradient. Australian Journal of Crop Science, 6, 768–776.
  • Munns, R. (1993). Physiological processes limiting plant growth in saline soils some dogmas and hypotheses. Plant, Cell & Environment, 16, 15–24. doi:10.1111/j.1365-3040.1993.tb00840.x
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250. doi:10.1046/j.0016-8025.2001.00808.x
  • Munns, R., James, R. A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043. doi:10.1093/jxb/erj100
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Neves, O. S. C., Carvalho, J. G., & Rodrigues, C. R. (2004). Crescimento e nutricção mineral de mudas de umbuzeiro (Spondias tuberosa Arr. Cam.) submetidas a níveis de salinidade em solução nutritive. Ciência Agrotecnologia, 28, 997–1006. doi:10.1590/S1413-70542004000500005
  • Nguyen, N. T., Moghaieb, R. E. A., Saneoka, H., & Fujita, K. (2004). RAPD markers associated with salt tolerance in Acacia auriculiformis and Acacia mangium. Plant Science, 167, 797–805. doi:10.1016/j.plantsci.2004.05.016
  • Ödemiş, B., & Çalişkan, M. E. (2014). Photosynthetic response of potato plants to soil salinity. Turkish Journal Agricultural and Natural Sciences, 2, 1429–1439.
  • Ort, D. R. (2001). When there is too much light. Plant Physiology, 125, 29–32.
  • Othman, Y., Al-Karaki, G., Al-Tawaha, A. R., & Al-Horani, A. (2006). Variation in germination and ion uptake in barley genotypes under salinity conditions. World Journal of Agricultural Sciences, 2, 11–15.
  • Pagter, M., Bragato, C., Malagoli, M., & Brix, H. (2009). Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Botany, 90, 43–51. doi:10.1016/j.aquabot.2008.05.005
  • Rahman, M. S., Matsumuro, T., Miyake, H., & Takeoka, Y. (2000). Salinity-induced ultra structural alterations in leaf cells of rice (Oryza sativa L.). Plant Production Science, 3, 422–429. doi:10.1626/pps.3.422
  • Rani, R. J., & Rose, C. M. (2012). Salt stress tolerance and stress proteins in wheat (Triticum aesticum L.). International Research Journal of Pharmacy, 3, 143–146.
  • Rasheed, F., & Delagrange, S. (2016). Acclimation of Betula alleghaniensis Britton to moderate soil water deficit: Small morphological changes make for important consequences in crown display. Tree Physiology, 36, 1320–1329.
  • Robinson, M. F., Véry, A. A., Sanders, D., & Mansfield, T. A. (1997). How can stomata contribute to salt tolerance? Annals of Botany, 80, 387–393. doi:10.1006/anbo.1996.0435
  • Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2007). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132, 209–219.
  • Serraj, R., & Sinclair, T. R. (2002). Osmolyte accumulation can it really help increase crop yield under drought conditions? Plant, Cell & Environment, 25, 333–341. doi:10.1046/j.1365-3040.2002.00754.x
  • Shahid, M. A., Pervez, M. A., Bilal, R. M., Ayyub, C. M., Ggazanfar, U., Abbas, T., … Akram, A. (2011). Effect of salt stress on growth, gas exchange attribute and chlorophyll contents of pea (Pisum sativum). African Journal of Agricultural Research, 6, 5808–5816.
  • Shalhevet, J., Huck, M. G., & Schroeder, B. P. (1995). Root and shoot growth responses to salinity in maize and soybean. Agronomy Journal, 87, 512–516. doi:10.2134/agronj1995.00021962008700030019x
  • Sixto, H., Borja, D., González, G., Jesús, J., Rueda, M., Garrido-Aranda, A., … Cantón, F. (2016). Eucalyptus spp and Populus spp. Coping with salinity stress: An approach on growth, or physiological and molecular features in the context of short rotation coppice (SRC). Trees, 30, 1873–1891. doi:10.1007/s00468-016-1420-7
  • Tardieu, F. (2005). Plant tolerance to water deficit: Physical limits and possibilities for progress. Comptes Rendus Geoscience, 337, 57–67. doi:10.1016/j.crte.2004.09.015
  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G. K. (2011). Additive effects of Na+ and Cl− ions on barley growth under salinity stress. Journal of Experimental Botany, 62, 2189–2203. doi:10.1093/jxb/err025
  • Tester, M., & Davenport, R. (2003). Na? tolerance and Na? transport in higher plants. Annals of Botany, 91, 503–527. doi:10.1093/aob/mcg058
  • Tomar, O. S., Dagar, J. C., & Singh, Y. P. (2004). Forest and fruit trees for alkali soils. Indian Farming, 53, 44–47.
  • Vaario, L. M., Yrjälä, K., Rousi, M., Sipila, T., & Pulkkinen, P. (2011). Leaf number indicates salt tolerance of young seedling families of european aspen (Populus tremula L.) growing in different soils. Silva Fennica, 45, 19–33. doi:10.14214/sf.28
  • Viégas, R. A., Queiroz, J. E., Silva, L. M. M., Silveira, J. A. G., Rocha, I. M. A., & Viégas, P. R. A. (2003). Plant growth, accumulation and solute partitioning of four forest species under salt stress. Revista Brasileira de Engenharia Agricola e Ambiental, 7, 258–262. doi:10.1590/S1415-43662003000200012
  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16, 123–132. doi:10.1016/j.copbio.2005.06.002
  • Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: A review. Journal of Environmental Biology, 32, 667–685.
  • Ziska, L. H., Seeman, L. H., & DeJong, T. M. (1990). Salinity induced limitations on photosynthesis in Prunus salicina, a deciduous tree species. Plant Physiology, 93, 864–870. doi:10.1104/pp.93.3.864

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.