267
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Prediction of Biomass in Dry Tropical Forests: An Approach on the Importance of Total Height in the Development of Local and Pan-tropical Models

ORCID Icon, , , , , , , , , , & show all

References

  • Abich, A., Mucheye, T., Tebikew, M., Gebremariam, Y.; Alemu, A. (2018). Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems. J For Res, 30(1)1619–1632. https://doi.org/10.1007/s11676-018-0707-5
  • Ali, A., & Mattsson, E. (2018). Wood density is a sustainability indicator for the management of dry zone homegarden agroforests: Evidences from biodiversity–ecosystem function relationships. Ecological Indicators, 105(1), 474–482. https://doi.org/10.1016/j.ecolind.2018.04.024
  • Althoff, T. D., Menezes, R. S. C., Pinto, A. D. S., Pareyn, F. G. C., Carvalho, A. L. D., Martins, J. C. R., De Carvalho, E. X., Silva, A. S. A. D., Dutra, E. D., & Sampaio, E. V. D. S. B. (2018). Adaptation of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agriculture, Ecosystems & Environment, 254(1), 26–34. https://doi.org/10.1016/j.agee.2017.11.016
  • Avitabile, V., & Camia, A. (2018). An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots. For Ecol Manag, 409(1), 489–498. https://doi.org/10.1016/j.foreco.2017.11.047
  • Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., De Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., & Willcock, S. (2016). An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology, 22(4), 1406–1420. https://doi.org/10.1111/gcb.13139
  • Baccini, A., & Asner, G. P. (2013). Improving pantropical forest carbon maps with airborne LiDAR sampling. Carbon Management, 4(6), 591–600. https://doi.org/10.4155/cmt.13.66
  • Bastin, J.-F., Barbier, N., Couteron, P., Adams, B., Shapiro, A., Bogaert, J., & De Cannière, C. (2014). Aboveground biomass mapping of African forest mosaics using canopy texture analysis: Toward a regional approach. Ecological Applications, 24(8), 1984–2001. https://doi.org/10.1890/13-1574.1
  • Bastin, J.-F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., Patriarca, C., Picard, N., Sparrow, B., Abraham, E. M., Aloui, K., Atesoglu, A., Attore, F., Bassüllü, Ç., Bey, A., Garzuglia, M., García-Montero, L. G., Groot, N., Guerin, G., Laestadius, L., & Castro, R. (2017). The extent of forest in dryland biomes. Science, 356(6338), 635–638. https://doi.org/10.1126/science.aam6527
  • Bastin, J.-F., Fayolle, A., Tarelkin, Y., Van Den Bulcke, J., De Haulleville, T., Mortier, F., Beeckman, H., Van Acker, J., Serckx, A., Bogaert, J., & De Cannière, C. (2015). Wood specific gravity variations and biomass of Central African tree species: The simple choice of the outer wood. PLoS One, 10(11), e0142146. https://doi.org/10.1371/journal.pone.0142146
  • Bouvet, A., Mermoz, S., Le Toan, T., Villard, L., Mathieu, R., Naidoo, L., & Asner, G. P. (2018). An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sensing of Environment, 206(1), 156–173. https://doi.org/10.1016/j.rse.2017.12.030
  • Brahma, B., Nath, A. J., Sileshi, G. W., & Das, A. K. (2018). Estimating biomass stocks and potential loss of biomass carbon through clear-felling of rubber plantations. Biomass and Bioenergy, 115(1), 88–96. https://doi.org/10.1016/j.biombioe.2018.04.019
  • Brown, S. (1997). Estimating biomass and biomass changing of tropical forests: A primer. FAO Forestry Paper.
  • Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci, 35, 881–902.
  • BARRETO,T. N. A.; SILVA, J. A. A; FERREIRA, R. L. C.; ALMEIDA, C. C. S (2018). Ajuste de modelos matemáticos á biomassa seca dos compartimentos de plantas lenhosas em área de caatinga. Forestalis, 46(118), 285–295. h ttps://d oi.org/h ttps://dx.d oi.org/1 0.18671/scifor.v46n118.14
  • Chaturvedi, R. K., & Raghubanshi, A. S. (2015). Allometric models for accurate estimation of aboveground biomass of teak in tropical dry forests of India. For Sci, 61(5), 938–949. https://doi.org/10.5849/forsci.14-190
  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005a). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x
  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005b). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x
  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pélissier, R., & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
  • Cushman, K. C., & Kellner, J. R. (2019). Prediction of forest aboveground net primary production from high-resolution vertical leaf-area profiles. Ecology Letters, 22(3), 538–546. https://doi.org/10.1111/ele.13214
  • Dalla Lana, M., Caraciolo Ferreira, R. L., Aleixo Da Silva, J. A., Pereira Duda, G., Lins E Silva Brandão, C. F., & Da Silva, A. F. (2018). Biomass equations for caatinga species. Nativa, 6(5), 517–525. http://dx.doi.org/10.31413/nativa.v6i5.5361
  • Dexter, K. G., Pennington, R. T., Oliveira-Filho, A. T., Bueno, M. L., Silva De Miranda, P. L., & Neves, D. M. (2018). Inserting tropical dry forests into the discussion on biome transitions in the tropics. Frontiers in Ecology and Evolution, 6(1), 104. https://doi.org/10.3389/fevo.2018.00104
  • Duncanson, L., & Dubayah, R. (2018). Monitoring individual tree-based change with airborne lidar. Ecology and Evolution, 8(10), 5079–5089. https://doi.org/10.1002/ece3.4075
  • Duncanson, L., Huang, W., Johnson, K., Swatantran, A., McRoberts, R. E., & Dubayah, R. (2017). Implications of allometric model selection for county-level biomass mapping. Carbon Balance and Management, 12(1), 1–12. https://doi.org/10.1186/s13021-017-0086-9
  • Duncanson, L., Rourke, O., & Dubayah, R. (2015). Small sample sizes yield biased allometric equations in temperate forests. Scientific Reports, 5(1), 1-12. https://doi.org/10.1038/srep17153
  • Duncanson, L. I., Niemann, K. O., & Wulder, M. A. (2010). Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sensing of Environment, 114(1), 138–154. https://doi.org/10.1016/j.rse.2009.08.018
  • Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Fernández-Sarría, A. (2011). Estimation of shrub biomass by airborne LiDAR data in small forest stands. For Ecol Manag, 262(9), 1697–1703. https://doi.org/10.1016/j.foreco.2011.07.026
  • Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Hermosilla, T. (2012). Estimation of biomass and volume of shrub vegetation using LiDAR and spectral data in a Mediterranean environment. Biomass and Bioenergy, 46(9), 710–721. https://doi.org/10.1016/j.biombioe.2012.06.023
  • Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bird, M., Brondizio, E. S., De Camargo, P., Chave, J., Djagbletey, G., Domingues, T. F., Drescher, M., Fearnside, P. M., França, M. B., Fyllas, N. M., Lopez-Gonzalez, G., & Lloyd, J. (2011). Height-diameter allometry of tropical forest trees. Biogeosciences, 8(5), 1081–1106. https://doi.org/10.5194/bg-8-1081-2011
  • Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragão, L. E. O. C., Araujo Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard C., G. A., Baker, T. R., & Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9(8), 3381–3403. https://doi.org/10.5194/bg-9-3381-2012
  • Gara, T. W., Murwira, A., Chivhenge, E., Dube, T., & Bangira, T. (2014). Estimating wood volume from canopy area in deciduous woodlands of Zimbabwe. Southern Forests: A Journal of Forest Science, 76(4), 237–244. https://doi.org/10.2989/20702620.2014.965981
  • Gonzalez De Tanago, J., Lau, A., Bartholomeus, H., Herold, M., Avitabile, V., Raumonen, P., Martius, C., Goodman, R. C., Disney, M., Manuri, S., Burt, A., & Calders, K. (2018). Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods in Ecology and Evolution, 9(2), 223–234. https://doi.org/10.1111/2041-210X.12904
  • Greaves, H. E., Vierling, L. A., Eitel, J. U. H., Boelman, N. T., Magney, T. S., Prager, C. M., & Griffin, K. L. (2015). Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sensing of Environment, 164(1), 26–35. https://doi.org/10.1016/j.rse.2015.02.023
  • Guha, S., Pal, T., Nath, D. S., & Das, B. (2019). Comparison of biomass in natural and plantation dry forests in India. In B. Pradhan (Ed.), GCEC 2017 (pp. 995–1006). Springer Singapore.
  • Helmer, E. H., Ruzycki, T. S., Wunderle, J. M., Vogesser, S., Ruefenacht, B., Kwit, C., Brandeis, T. J., & Ewert, D. N. (2010). Mapping tropical dry forest height, foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat. Remote Sensing of Environment, 114(11), 2457–2473. https://doi.org/10.1016/j.rse.2010.05.021
  • Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-Bredu, S., Valentini, R., Bernoux, M., & Saint-André, L. (2010). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag, 260(8), 1375–1388. https://doi.org/10.1016/j.foreco.2010.07.040
  • Hildebrandt, R., & Iost, A. (2012). From points to numbers: A database-driven approach to convert terrestrial LiDAR point clouds to tree volumes. European Journal of Forest Research, 131(6), 1857–1867. https://doi.org/10.1007/s10342-012-0638-1
  • Hiltner, U., Huth, A., Bräuning, A., Hérault, B., & Fischer, R. (2018). Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. For Ecol Manag, 430(1), 517–525. https://doi.org/10.1016/j.foreco.2018.08.042
  • Instituto Brasileiro de Geografia e Estatística- IBGE (2012) Manual técnico da vegetação brasileira.
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer New York.
  • Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., Dalponte, M., Van Ewijk, K. Y., Forrester, D. I., Haeni, M., Higgins, S. I., Holdaway, R. J., Iida, Y., Lorimer, C., Marshall, P. L., Momo, S., Moncrieff, G. R., Ploton, P., Poorter, L., Rahman, K. A., & Coomes, D. A. (2017). Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23(1), 177–190. https://doi.org/10.1111/gcb.13388
  • Kachamba, D., Ørka, H., Næsset, E., Eid, T., & Gobakken, T. (2017). Influence of plot size on efficiency of biomass estimates in inventories of dry tropical forests assisted by photogrammetric data from an unmanned aircraft system. Remote Sensing, 9(6), 610. https://doi.org/10.3390/rs9060610
  • Larjavaara, M., Muller-Landau, H. C., & Metcalf, J. (2013). Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution, 4(9), 793–801. https://doi.org/10.1111/2041-210X.12071
  • Lima, R. B. D., Alves Júnior, F. T., Oliveira, C. P. D., Silva, J. A. A. D., & Ferreira, R. L. C. (2017). Predicting of biomass in Brazilian tropical dry forest: A statistical evaluation of generic equations. Anais Da Academia Brasileira De Ciências, 89(3), 1815–1828. https://doi.org/10.1590/0001-3765201720170047
  • Návar, J. (2015). Pan tropical biomass equations for Mexico’s dry forests. Agronomía Colombiana, 32(3), 367–376. https://doi.org/10.15446/agron.colomb.v32n3.45627
  • Návar, J., Ríos-Saucedo, J., Pérez-Verdín, G., Rodríguez-Flores, F. D. J., & Domínguez-Calleros, P. A. (2013). Regional aboveground biomass equations for North American arid and semi-arid forests. Journal of Arid Environments, 97(1), 127–135. https://doi.org/10.1016/j.jaridenv.2013.05.016
  • Návar-Cháidez, J. (2010). Biomass allometry for tree species of northwestern Mexico. Trop. Subtrop. Agroecosystems, 12(3), 507–519. http://www.revista.ccba.uady.mx/urn:1870-0462-tsaes.v12i3.391
  • Packard, G. C., & Boardman, T. J. (2008). Model Selection and Logarithmic Transformation in Allometric Analysis. Physiological and Biochemical Zoology, 81(4), 496–507. https://doi.org/10.1086/589110
  • Pelletier, J., Siampale, A., Legendre, P., Jantz, P., Laporte, N. T., & Goetz, S. J. (2017). Human and natural controls of the variation in aboveground tree biomass in African dry tropical forests. Ecological Applications, 27(5), 1578–1593. https://doi.org/10.1002/eap.1550
  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Roitman, I., Bustamante, M. M. C., Haidar, R. F., et al (2018). Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado: Re-evaluating allometric equations and environmental influences. PLoS One, 13(8), e0196742. https://doi.org/10.1371/journal.pone.0196742
  • Rutishauser, E., Noor’an, F., Laumonier, Y., Halperin, J., Hergoualc’h, K., & Verchot, L. (2013). Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For Ecol Manag, 307(1), 219–225. https://doi.org/10.1016/j.foreco.2013.07.013
  • Salas-Morales, S. H., González, E. J., & Meave, J. A. (2018). Canopy height variation and environmental heterogeneity in the tropical dry forests of coastal Oaxaca, Mexico. Biotropica, 50(1), 26–38. https://doi.org/10.1111/btp.12491
  • Salinas-Melgoza, M. A., Skutsch, M., & Lovett, J. C. (2018). Predicting aboveground forest biomass with topographic variables in human-impacted tropical dry forest landscapes. Ecosphere, 9(1), e02063. https://doi.org/10.1002/ecs2.2063
  • Salis, S. M., Assis, M. A., Mattos, P. P., & Pião, A. C. S. (2006). Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil’s Pantanal wetlands based on allometric correlations. For Ecol Manag, 228(1–3), 61–68. https://doi.org/10.1016/j.foreco.2006.02.025
  • Sampaio, E., Gasson, P., Baracat, A., Cutler, D., Pareyn, F., & Lima, K. C. (2010). Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. For Ecol Manag, 259(6), 1135–1140. https://doi.org/10.1016/j.foreco.2009.12.028
  • Sampaio, E. V. S. B., & Silva, G. C. (2005). Biomass equations for Brazilian semiarid caatinga plants. Acta Bot Bras, 19(4), 935–943. https://doi.org/10.1590/S0102-33062005000400028
  • Schumacher, F. X.; HAall, F. S. (1933). Logarithmic expression of timber-tree volume. Journal of Agricultural Research,47(9), 719–734, 1933.
  • Sullivan, M. J. P., Lewis, S. L., Hubau, W., Qie, L., Baker, T. R., Banin, L. F., Chave, J., Cuni‐Sanchez, A., Feldpausch, T. R., Lopez‐Gonzalez, G., Arets, E., Ashton, P., Bastin, J.-F., Berry, N. J., Bogaert, J., Boot, R., Brearley, F. Q., Brienen, R., Burslem, D. F. R. P., Canniere, C., & Phillips, O. L. (2018). Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 9(5), 1179–1189. https://doi.org/10.1111/2041-210X.12962
  • Ubuy, M. H., Eid, T., Bollandsås, O. M., & Birhane, E. (2018). Aboveground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. Journal of Arid Environments, 156(1), 9–18. https://doi.org/10.1016/j.jaridenv.2018.05.007
  • Wagner, F. H., Hérault, B., Bonal, D., Stahl, C., Anderson, L. O., Baker, T. R., Becker, G. S., Beeckman, H., Boanerges Souza, D., Botosso, P. C., Bowman, D. M. J. S., Bräuning, A., Brede, B., Brown, F. I., Camarero, J. J., Camargo, P. B., Cardoso, F. C. G., Carvalho, F. A., Castro, W., Chagas, R. K., & Aragão, L. E. O. C. (2016). Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 13(8), 2537–2562. h ttps://d oi.org/h ttps://d oi.org/1 0.5194/bg-13-2537-2016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.