160
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Estimation of Leaf Area Index of Moso Bamboo Canopies

ORCID Icon, , ORCID Icon, , , & show all

References

  • Behera, S. K., Srivastava, P., Pathre, U. V., & Tuli, R. (2010). An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 plant canopy analyzer. Agricultural and Forest Meteorology, 150(2), 307–311. https://doi.org/10.1016/j.agrformet.2009.11.009
  • Bréda, N. J. (2003). Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403–2417. https://doi.org/10.1093/jxb/erg263
  • Cao, L., Coops, N. C., Sun, Y., Ruan, H., Wang, G., Dai, J., & She, G. (2019). Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 114–129. https://doi.org/10.1016/j.isprsjprs.2018.12.006
  • Chang, E. H., & Chiu, C. Y. (2015). Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo. Applied Soil Ecology, 91, 1–7. https://doi.org/10.1016/j.apsoil.2015.02.001
  • Chen, J. M., & Black, T. A. (1992). Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology, 60(3–4), 249–266. https://doi.org/10.1016/0168-1923(92)90040-B
  • Chen, J. M., & Cihlar, J. (1995). Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 777–787. https://doi.org/10.1109/36.387593
  • Chen, J. M., & Cihlar, J. (1996). Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 55(2), 153–162. https://doi.org/10.1016/0034-4257(95)00195-6
  • Chen, J. M., Govind, A., Sonnentag, O., Zhang, Y., Barr, A., & Amiro, B. (2006). Leaf area index measurements at Fluxnet-Canada forest sites. Agricultural and Forest Meteorology, 140(1–4), 257–268. https://doi.org/10.1016/j.agrformet.2006.08.005
  • Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., & Plummer, S. (1997). Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research: Atmospheres, 102(D24), 29429–29443. https://doi.org/10.1029/97JD01107
  • Chianucci, F., Puletti, N., Giacomello, E., Cutini, A., & Corona, P. (2015). Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban Forestry & Urban Greening, 14(2), 377–382. https://doi.org/10.1016/j.ufug.2015.04.001
  • Eriksson, H., Eklundh, L., Hall, K., & Lindroth, A. (2005). Estimating lai in deciduous forest stands. Agricultural and Forest Meteorology, 129(1–2), 27–37. https://doi.org/10.1016/j.agrformet.2004.12.003
  • Fang, H., Li, W., Wei, S., & Jiang, C. (2014). Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agricultural and Forest Meteorology, 198-199, 126–141. https://doi.org/10.1016/j.agrformet.2014.08.005
  • Farooq, T. H., Yan, W., Chen, X., Shakoor, A., Rashid, M. H. U., Gilani, M. M., He, Z., & Wu, P. (2020). Dynamics of canopy development of Cunninghamia lanceolata mid-age plantation in relation to foliar nitrogen and soil quality influenced by stand density. Global Ecology and Conservation, 24, e01209. https://doi.org/10.1016/j.gecco.2020.e01209
  • Fassnacht, K., Gower, S., Norman, J., & McMurtric, R. (1994). A comparison of optical and direct methods for estimating foliage surface area index in forests. Agricultural and Forest Meteorology, 71(1–2), 183–207. https://doi.org/10.1016/0168-1923(94)90107-4
  • Gonsamo, A., & Pellikka, P. (2008). Methodology comparison for slope correction in canopy leaf area index estimation using hemispherical photography. Forest Ecology and Management, 256(4), 749–759. https://doi.org/10.1016/j.foreco.2008.05.032
  • Gu, C., Du, H., Mao, F., Han, N., Zhou, G., Xu, X., Sun, S., & Gao, G. (2016). Global sensitivity analysis of PROSAIL model parameters when simulating Moso bamboo forest canopy reflectance. International Journal of Remote Sensing, 37(22), 5270–5286. https://doi.org/10.1080/01431161.2016.1239287
  • Hosseini, M., McNairn, H., Merzouki, A., & Pacheco, A. (2015). Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data. Remote Sensing of Environment, 170, 77–89. https://doi.org/10.1016/j.rse.2015.09.002
  • Houborg, R., McCabe, M. F., & Gao, F. (2016). A spatio-temporal enhancement method for medium resolution LAI (STEM-LAI). International Journal of Applied Earth Observation and Geoinformation, 47, 15–29. https://doi.org/10.1016/j.jag.2015.11.013
  • Jiapaer, G., Yi, Q., Yao, F., & Zhang, P. (2017). Comparison of non-destructive LAI determination methods and optimization of sampling schemes in an open Populus euphratica ecosystem. Urban Forestry & Urban Greening, 26, 114–123. https://doi.org/10.1016/j.ufug.2017.06.010
  • Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., & Baret, F. (2004). Review of methods for in situ leaf area index determination. Agricultural and Forest Meteorology, 121(1–2), 19–35. https://doi.org/10.1016/j.agrformet.2003.08.027
  • Lang, A. R. G., & Xiang, Y. (1986). Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agricultural and Forest Meteorology, 37(3), 229–243. https://doi.org/10.1016/0168-1923(86)90033-X
  • Leblanc, S. G., Chen, J. M., Fernandes, R., Deering, D. W., & Conley, A. (2005). Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agricultural and Forest Meteorology, 129(3–4), 187–207. https://doi.org/10.1016/j.agrformet.2004.09.006
  • Leblanc, S. G., & Fournier, R. A. (2014). Hemispherical photography simulations with an architectural model to assess retrieval of leaf area index. Agricultural and Forest Meteorology, 194, 64–76. https://doi.org/10.1016/j.agrformet.2014.03.016
  • Li, R., Werger, M. J. A., Kroon, H. D., During, H. J., & Zhong, Z. C. (2000). Interactions between shoot age structure, nutrient availability and physiological integration in the giant bamboo Phyllostachys pubescens. Plant Biology, 2(4), 437–446. https://doi.org/10.1055/s-2000-5962
  • Li, X., Du, H., Mao, F., Zhou, G., Chen, L., Xing, L., Fan, W., Xu, X., Liu, Y., Cui, L., Li, Y., Zhu, D., & Liu, T. (2018). Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agricultural and Forest Meteorology, 256-257, 445–457. https://doi.org/10.1016/j.agrformet.2018.04.002
  • Li, X., Du, H., Mao, F., Zhou, G., Han, N., Xu, X., Liu, Y., Zhu, D., Zheng, J., Dong, L., & Zhang, M. (2019). Assimilating spatiotemporal MODIS LAI data with a particle filter algorithm for improving carbon cycle simulations for bamboo forest ecosystems. Science of the Total Environment, 694, 133803. https://doi.org/10.1016/j.scitotenv.2019.133803
  • Li, X., Mao, F., Du, H., Zhou, G., Xu, X., Han, N., Sun, S., Gao, G., & Chen, L. (2017). Assimilating leaf area index of three typical types of subtropical forest in China from MODIS time series data based on the integrated ensemble Kalman filter and PROSAIL model. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 68–78. https://doi.org/10.1016/j.isprsjprs.2017.02.002
  • LI-COR, Inc. (2010, February). LAI-2200C Plant Canopy Analyzer Instruction Manual. Retrieved February 10, 2021, from https://www.licor.com/documents/6n3conpja6uj9aq1ruyn
  • Liu, J., Pattey, E., & Jégo, G. (2012). Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123, 347–358. https://doi.org/10.1016/j.rse.2012.04.002
  • Luo, S., Wang, C., Xi, X., Nie, S., Fan, X., Chen, H., Yang, X., Peng, D., Lin, Y., & Zhou, G. (2019). Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI, canopy height and above-ground biomass Ecological Indicators, 102, 801–812 https://doi.org/10.1016/j.ecolind.2019.03.011
  • Majasalmi, T., Rautiainen, M., Stenberg, P., & Lukeš, P. (2013). An assessment of ground reference methods for estimating LAI of boreal forests. Forest Ecology and Management, 292, 10–18. https://doi.org/10.1016/j.foreco.2012.12.017
  • Mao, F., Li, X., Du, H., Zhou, G., Han, N., Xu, X., Liu, Y., Chen, L., & Cui, L. (2017a). Comparison of two data assimilation methods for improving MODIS LAI time series for bamboo forests. Remote Sensing, 9(5), 401. https://doi.org/10.3390/rs9050401
  • Mao, F., Zhou, G., Li, P., Du, H., Xu, X., Shi, Y., Mo, L., Zhou, Y., & Tu, G. (2017b). Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model. Journal of Environmental Management, 191, 126–135. https://doi.org/10.1016/j.jenvman.2017.01.016
  • Nguy-Robertson, A. L., Peng, Y., Gitelson, A. A., Arkebauer, T. J., Pimstein, A., Herrmann, I., Karnieli, A., Rundquist, D. C., & Bonfil, D. J. (2014). Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agricultural and Forest Meteorology, 192-193, 140–148. https://doi.org/10.1016/j.agrformet.2014.03.004
  • Nilson, T. (1971). A theoretical analysis of the frequency of gaps in plant stands. Agricultural Meteorology, 8, 25–38. https://doi.org/10.1016/0002-1571(71)90092-6
  • Okutomi, K., Shinoda, S., & Fukuda, H. (1996). Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. Journal of Vegetation Science, 7(5), 723–728. https://doi.org/10.2307/3236383
  • Ryu, Y., Nilson, T., Kobayashi, H., Sonnentag, O., Law, B. E., & Baldocchi, D. D. (2010). On the correct estimation of effective leaf area index: Does it reveal information on clumping effects? Agricultural and Forest Meteorology, 150(3), 463–472. https://doi.org/10.1016/j.agrformet.2010.01.009
  • Saikia, P., & Pandey, V. C. (2020). Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.)-One of the most valuable bamboo species for phytoremediation. In V. C. Pandey (Ed.), Phytoremediation potential of perennial grasses (pp. 245–258). Elsevier. https://doi.org/10.1016/B978-0-12-817732-7.00012-2
  • Schleppi, P., Conedera, M., Sedivy, I., & Thimonier, A. (2007). Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agricultural and Forest Meteorology, 144(3–4), 236–242. https://doi.org/10.1016/j.agrformet.2007.02.004
  • SFAPRC. (2015). Forest Resources in China – The 8th National Forest Inventory. State Forestry Administration. http://www.forestdata.cn/index.html
  • Shi, Y., Xu, L., Zhou, Y., Ji, B., Zhou, G., Fang, H., Yin, J., & Deng, X. (2018). Quantifying driving factors of vegetation carbon stocks of Moso bamboo forests using machine learning algorithm combined with structural equation model. Forest Ecology and Management, 429, 406–413. https://doi.org/10.1016/j.foreco.2018.07.035
  • Su, W., Fan, S., Zhao, J., & Cai, C. (2019). Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. Forest Ecology and Management, 453, 117632. https://doi.org/10.1016/j.foreco.2019.117632
  • Unger, M., Homeier, J., & Leuschner, C. (2013). Relationships among leaf area index, below-canopy light availability and tree diversity along a transect from tropical lowland to montane forests in NE Ecuador. Tropical Ecology, 54(1), 33–45. https://doi.org/10.1080/17451000.2012.727436
  • Wang, T., Wang, H., Cai, D., Gao, Y., Gu, L., Wang, Y., Lin, C., Ma, L., & Gu, L. (2017). Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). The Plant Journal, 91(4), 684–699. https://doi.org/10.1111/tpj.13597
  • Wang, Y., Bai, S., Binkley, D., Zhou, G., & Fang, F. (2016). The independence of clonal shoot’s growth from light availability supports moso bamboo invasion of closed-canopy forest. Forest Ecology and Management, 368, 105–110. http://dx.doi.org/10.1016/j.foreco.2016.02.037
  • Wu, X., Fan, W., Du, H., Ge, H., Huang, F., & Xu, X. (2019). Estimating crown structure parameters of moso bamboo: Leaf area and leaf angle distribution. Forests, 10(8), 686. https://doi.org/10.3390/f10080686
  • Xu, L., Fang, H., Deng, X., Ying, J., Lv, W., Shi, Y., Zhou, G., & Zhou, Y. (2020). Biochar application increased ecosystem carbon sequestration capacity in a Moso bamboo forest. Forest Ecology and Management, 475, 118447. https://doi.org/10.1016/j.foreco.2020.118447
  • Xu, X., Du, H., Zhou, G., & Li, P. (2016). Method for improvement of MODIS leaf area index products based on pixel-to-pixel correlations. European Journal of Remote Sensing, 49(1), 57–72. https://doi.org/10.5721/EuJRS20164904
  • Xu, X., Du, H., Zhou, G., Mao, F., Li, X., Zhu, D., Li, Y., & Cui, L. (2018). Remote estimation of canopy leaf area index and chlorophyll content in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forest using MODIS reflectance data. Annals of Forest Science, 75(1), 1–14. https://doi.org/10.1007/s13595-018-0721-y
  • Yang, J., Chen, H., Borjigin, N., Zhao, M., Zhou, Y., & Huang, Y. (2017). Validation of the MODIS LAI product in Qinghai Lake Basin combined with field measurements using Landsat 8 OLI data. Acta Ecologica Sinica, 37(5), 322–331. https://doi.org/10.1016/j.chnaes.2017.09.004
  • Yen, T. M. (2016). Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachys pubescens). Botanical Stududies, 57(1), 10. https://doi.org/10.1186/s40529-016-0126-x
  • Yen, T.-M., & Lee, J.-S. (2011). Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management, 261(6), 995–1002. https://doi.org/10.1016/j.foreco.2010.12.015
  • Yin, G., Li, A., Jin, H., Zhao, W., Bian, J., Qu, Y., Zeng, Y., & Xu, B. (2017). Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO. Agricultural and Forest Meteorology, 233, 209–221. https://doi.org/10.1016/j.agrformet.2016.11.267
  • Zhang, M., Su, W., Fu, Y., Zhu, D., Xue, J.-H., Huang, J., Wang, W., Wu, J., & Yao, C. (2019). Super-resolution enhancement of Sentinel-2 image for retrieving LAI and chlorophyll content of summer corn. European Journal of Agronomy, 111, 125938. https://doi.org/10.1016/j.eja.2019.125938
  • Zhang, Y., Chen, J. M., & Miller, J. R. (2005). Determining digital hemispherical photograph exposure for leaf area index estimation. Agricultural and Forest Meteorology, 133(1–4), 166–181. https://doi.org/10.1016/j.agrformet.2005.09.009
  • Zhou, G. M., Meng, C. F., Jiang, P. K., & Xu, Q. F. (2011). Review of carbon fixation in bamboo forests in China. The Botanical Review, 77(3), 262–270. https://doi.org/10.1007/s12229-011-9082-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.