174
Views
1
CrossRef citations to date
0
Altmetric
Original Article

No Evidence that the Valuable Timber Species, Dalbergia retusa, Enhances Nutrient Cycling and Uptake by Neighboring Timber Species

References

  • Batterman, S. A., Hall, J. S., Turner, B. L., Hedin, L. O., LaHaela Walter, J. K., Sheldon, P., & van Breugel, M. (2018). Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecology Letters, 21(10), 1486–1495. https://doi.org/10.1111/ele.13129
  • Bouillet, J. P., Laclau, J. P., Gonçalves, J. D. M., Moreira, M. Z., Trivelin, P. C. O., Jourdan, C., Silva, E. V., Piccolo, M. C., Tsai, S. M., & Galiana, A. (2008). Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 2: Nitrogen accumulation in the stands and biological N2 fixation. Forest Ecology and Management, 255(12), 3918–3930. https://doi.org/10.1016/j.foreco.2007.10.050
  • Cai, H., Li, F., & Jin, G. (2019). Fine root biomass, production and turnover rates in plantations versus natural forests: Effects of stand characteristics and soil properties. Plant and Soil, 436(1–2), 463–474. https://doi.org/10.1007/s11104-019-03948-8
  • Condit, R., Engelbrecht, B. M., Pino, D., Pérez, R., & Turner, B. L. (2013). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences, 110(13), 5064–5068. https://doi.org/10.1073/pnas.1218042110
  • Craven D, Cedeño N, Mariscal E, et al (2011) Amelioration of growing conditions in mixed species plantation of Terminalia Amazonia and nitrogen-fixing Dalbergia Retusa. In: Montagnini F, Finney C (eds) Restoring Degraded Landscapes with Native Species in Latin America. Nova Science Publishers, New York, pp 63–79
  • Davis, A. S., Jacobs, D. F., & Dumroese, R. K. (2012). Challenging a paradigm: Toward integrating indigenous species into tropical plantation forestry. In Forest landscape restoration,edited by John Stanturf, David Lamb, and Palle Madsen, (pp. 293–308). Springer.
  • Erskine, P. D., Lamb, D., & Bristow, M. (2006). Tree species diversity and ecosystem function: Can tropical multi-species plantations generate greater productivity? Forest Ecology and Management, 233(2–3), 205–210. https://doi.org/10.1016/j.foreco.2006.05.013
  • Espinoza, E. O., Wiemann, M. C., Barajas-Morales, J., Chavarria, G. D., & McClure, P. J. (2015). Forensic analysis of CITES-protected Dalbergia timber from the Americas. IAWA Journal, 36(3), 311–325. https://doi.org/10.1163/22941932-20150102
  • Ewel, J. J., Celis, G., & Schreeg, L. (2015). Steeply increasing growth differential between mixture and monocultures of tropical trees. Biotropica, 47(2), 162–171. https://doi.org/10.1111/btp.12190
  • Ewel, J. J., & Mazzarino, M. J. (2008). Competition from below for light and nutrients shifts productivity among tropical species. Proceedings of the National Academy of Sciences, 105(48), 18836–18841
  • Forrester, D. I. (2014). Forest ecology and management the spatial and temporal dynamics of species interactions in mixed-species forests : From pattern to process. Forest Ecology and Management, 312, 282–292. https://doi.org/10.1016/j.foreco.2013.10.003
  • Forrester, D. I., Bauhus, J., Cowie, A. L., & Vanclay, J. K. (2006). Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review. Forest Ecology and Management, 233(2–3), 211–230. https://doi.org/10.1016/j.foreco.2006.05.012
  • Gei, M. G., & Powers, J. S. (2013). Do legumes and non-legumes tree species affect soil properties in unmanaged forests and plantations in Costa Rican dry forests?. Soil Biology and Biochemistry, 57, 264-272. https://doi.org/10.1016/j.soilbio.2012.09.013
  • Guillemot, J., Kunz, M., Schnabel, F., Fichtner, A., Madsen, C. P., Gebauer, T., Härdtle, W., von Oheimb, G., & Potvin, C. (2020). Neighbourhood-mediated shifts in tree biomass allocation drive overyielding in tropical species mixtures. The New Phytologist, 228(4), 1256–1268. https://doi.org/10.1111/nph.16722
  • Guo, Z., Zhang, L., & Li, Y. (2010). Increased dependence of humans on ecosystem services and biodiversity. PloS One, 5(10), e13113. https://doi.org/10.1371/journal.pone.0013113
  • Hall, J. S., & Ashton, M. (2016). Guía de crecimiento y sobrevivencia temprana de 64 especies de árboles nativos de Pananmá y el Neotrópico (No. 581.9 H174). Instituto Smithsonian de Investigaciones Tropicales.
  • Hall, J. S., Ashton, M. S., Garen, E. J., & Jose, S. (2011). The ecology and ecosystem services of native trees: Implications for reforestation and land restoration in Mesoamerica. Forest Ecology and Management, 261(10), 1553–1557. https://doi.org/10.1016/j.foreco.2010.12.011
  • Hall, J. S., McKenna, J. J., Ashton, P. M. S., & Gregoire, T. G. (2004). Habitat characterizations underestimate the role of edaphic factors controlling the distribution of Entandrophragma. Ecology, 85(8), 2171–2183. https://doi.org/10.1890/03-0043
  • He, Q., Bertness, M. D., & Altieri, A. H. (2013). Global shifts towards positive species interactions with increasing environmental stress. Ecology Letters, 16(5), 695–706. https://doi.org/10.1111/ele.12080
  • Hulvey, K. B., Hobbs, R. J., Standish, R. J., Lindenmayer, D. B., Lach, L., & Perring, M. P. (2013). Benefits of tree mixes in carbon plantings. Nature Climate Change, 3(10), 869–874. https://doi.org/10.1038/nclimate1862
  • Isaac, M. E., & Borden, K. A. (2019). Nutrient acquisition strategies in agroforestry systems. Plant and Soil, 444(1–2), 1–19. https://doi.org/10.1007/s11104-019-04232-5
  • Jobbágy, E. G., & Jackson, R. B. (2004). The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology, 85(9), 2380–2389. https://doi.org/10.1890/03-0245
  • Jose, S., Williams, R., & Zamora, D. (2006). Belowground ecological interactions in mixed-species forest plantations. Forest Ecology and Management, 233(2–3), 231–239. https://doi.org/10.1016/j.foreco.2006.05.014
  • Kelty, M. J. (2006). The role of species mixtures in plantation forestry. Forest Ecology and Management, 233(2–3), 195–204. https://doi.org/10.1016/j.foreco.2006.05.011
  • Kerdraon, D., Drewer, J., Castro, B., Wallwork, A., Hall, J. S., & Sayer, E. J. (2019). Litter traits of native and non-native tropical trees influence soil carbon dynamics in timber plantations in Panama. Forests, 10(3), 209. https://doi.org/10.3390/f10030209
  • Liu, C. L. C., Kuchma, O., & Krutovsky, K. V. (2018). Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and conservation, 15, e00419. https://doi.org/10.1016/j.gecco.2018.e00419
  • Marshall, A., McLaughlin, B. P., Zerr, C., Yanguas-Fernández, E., & Hall, J. S. (2020). Early indications of success rehabilitating an underperforming teak (Tectona grandis) plantation in Panama through enrichment planting.New Forestsvolume 52, 377–395. doi:10.1007/s11056-020-09801-6.
  • Mayoral, C., van Breugel, M., Cerezo, A., & Hall, J. S. (2017). Survival and growth of five Neotropical timber species in monocultures and mixtures. Forest Ecology and Management, 403, 1–11. https://doi.org/10.1016/j.foreco.2017.08.002
  • Mayoral, C., van Breugel, M., Turner, B. L., Asner, G. P., Vaughn, N. R., & Hall, J. S. (2019). Effect of microsite quality and species composition on tree growth: A semi-empirical modeling approach. Forest Ecology and Management, 432, 534–545. https://doi.org/10.1016/j.foreco.2018.09.047
  • Messier, C., Bauhus, J., Sousa-Silva, R., Auge, H., Baeten, L., Barsoum, N., Bruelheide, H., Caldwell, B., Cavender‐Bares, J., Dhiedt, E., & Eisenhauer, N. (2021). For the sake of resilience and multifunctionality, let’s diversify planted forests! Conservation Letters, n/a, e12829. https://doi.org/10.1111/conl.12829
  • Millennium Ecosystem Assessment (MA). (2003). Ecosystems and human well-being: A framework for assessment. Island Press.
  • Moya, R., & Muñoz, F. (2010). Physical and mechanical properties of eight fast-growing plantation species in Costa Rica. Journal of Tropical Forest Science, 317-328.
  • Moya-Roque, R., Leandro-Zúñiga, L., & Murillo-Gamboa, O. (2009). Wood characteristics of Terminalia amazonia, Vochysia guatemalensis and Hyeronima alchorneoides planted in Costa Rica. Características de la madera de Terminalia amazonia, Vochysia guatemalensis e Hyeronima alchorneoides sembrados en Costa Rica. Bosque, 30(2), 78–87.
  • Nichols, D. (1994). Terminalia amazonia (Gmel.) Exell: Development of a native species for reforestation and agroforestry. Commonwealth Forestry Review, 73(1), 9–13.
  • Nichols, J. D., & Carpenter, F. L. (2006). Interplanting Inga edulis yields nitrogen benefits to Terminalia amazonia. Forest Ecology and Management, 233(2–3), 344–351. https://doi.org/10.1016/j.foreco.2006.05.031
  • Nichols, J. D., & Vanclay, J. K. (2012). Domestication of native tree species for timber plantations: key insights for tropical island nations. International Forestry Review,14(4), 402–413.
  • Nottingham, A. T., Turner, B. L., Stott, A. W., & Tanner, E. V. (2015). Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology and Biochemistry, 80, 26-33. https://doi.org/10.1016/j.soilbio.2014.09.012
  • Ogden, F. L., Crouch, T. D., Stallard, R. F., & Hall, J. S. (2013). Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resources Research, 49(12), 8443–8462. https://doi.org/10.1002/2013WR013956
  • Paul, G. S., Montagnini, F., Berlyn, G. P., Craven, D. J., van Breugel, M., & Hall, J. S. (2012). Foliar herbivory and leaf traits of five native tree species in a young plantation of Central Panama. New Forests, 43(1), 69–87. https://doi.org/10.1007/s11056-011-9267-7
  • Piotto, D., Craven, D., Montagnini, F., & Alice, F. (2010). Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New Forests, 39(3), 369–385. https://doi.org/10.1007/s11056-009-9177-0
  • Richards, A. E., Forrester, D. I., Bauhus, J., & Scherer-Lorenzen, M. (2010). The influence of mixed tree plantations on the nutrition of individual species: A review. Tree Physiology, 30(9), 1192–1208.570. https://doi.org/10.1093/treephys/tpq035
  • Riedel, J., Dorn, S., Platt, M., Potvin, C., Mody, K. 2013. Time matters: Temporally changing effects of planting schemes and insecticide treatment on native timber tree performance on former pasture. Forest Ecology and Management 297, 49–56.
  • RStudio Team. (2020). RStudio: Integrated development environment for R. RStudio, PBC. http://www.rstudio.com/
  • Sinacore, K., Asbjornsen, H., Hernandez-Santana, V., & Hall, J. S. (2019). Drought differentially affects growth, transpiration, and water use efficiency of mixed and monospecific planted forests. Forests, 10(2), 153. https://doi.org/10.3390/f10020153
  • Sinacore, K., Asbjornsen, H., Hernandez‐Santana, V., & Hall, J. S. (2020, June). Differential and dynamic water regulation responses to El Niño for monospecific and mixed species planted forests. Ecohydrology, 13(7), 1–14. https://doi.org/10.1002/eco.2238
  • Stallard, R. F., Ogden, F. L., Elsenbeer, H., & Hall, J. S. (2010). Panama canal watershed experiment: Agua salud project. Water Resources IMPACT, 12(4), 17–20. http://ctfs.si.edu/Public/pdfs/ToDelete/2010_3Q_Stallard_et_al_Water_Rec_IMPACT.pdf
  • Turner, B. L., Brenes-Arguedas, T., & Condit, R. (2018). Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 555(7696), 367–370. https://doi.org/10.1038/nature25789
  • Turner, B. L., & Engelbrecht, B. M. (2011). Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 103(1–3), 297–315. https://doi.org/10.1007/s10533-010-9466-x
  • Van Breugel, M., Craven, D., Lai, H. R., Baillon, M., Turner, B. L., & Hall, J. S. (2019). Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. Journal of Ecology, 107(2), 566–581. https://doi.org/10.1111/1365-2745.13126
  • Van Breugel, M., & Hall, J. S., 2008. Experimental design of the ‘Agua Salud’ native timber species plantation. Unpublished Typescript Report. Retrieved April 15 2010, from http://biogeodb.stri.si.edu/bioinformatics/sigeo/aguasalud/data/docs/Design_Native%20Species_Plantatios_05052008.pdf
  • van Breugel, M., Hall, J. S., Craven, D. J., Gregoire, T. G., Park, A., Dent, D. H., Wishnie, M. H., Mariscal, E., Deago, J., Ibarra, D., Cedeño, N., & Ashton, M. S. (2011). Early growth and survival of 49 tropical tree species across sites differing in soil fertility and rainfall in Panama. Forest Ecology and Management, 261(10), 1580–1589. https://doi.org/10.1016/j.foreco.2010.08.019
  • Vardeman, E., & Runk, J. V. (2020). Panama’s illegal rosewood logging boom from Dalbergia retusa. Global Ecology and Conservation, 23, e01098. https://doi.org/10.1016/j.gecco.2020.e01098
  • Voigtlaender, M., Laclau, J. P., de Moraes Gonçalves, J. L., de Cássia Piccolo, M., Moreira, M. Z., Nouvellon, Y., & Bouillet, J. P. (2012). Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil, 352(1–2), 99–111.
  • Voigtlaender, M., Laclau, J. P., de Moraes Gonçalves, J. L., de Cássia Piccolo, M., Moreira, M. Z., Nouvellon, Y., Ranger, J., & Bouillet, J. P. (2012). Introducing Acacia mangium trees in Eucalyptus grandis plantations: Consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil, 352(1–2), 99–111. https://doi.org/10.1007/s11104-011-0982-9
  • Waring, B. G., Álvarez-Cansino, L., Barry, K. E., Becklund, K. K., Dale, S., Gei, M. G., & Powers, J. S. (2015). Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’effects. Proceedings of the Royal Society B: Biological Sciences, 282(1812).
  • Zhang, W., Qiao, W., Gao, D., Dai, Y., Deng, J., Yang, G., & Ren, G. (2018). Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. Catena, 161, 85-95. https://doi.org/10.1016/j.catena.2017.10.021
  • Zinke, P. J. (1962). The pattern of influence of individual forest trees on soil properties. Ecology, 43(1), 130–133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.