199
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Leaf Litter Decomposition and Nutrient Release Dynamics of Flemingia semialata Roxb. - A Potential Woody Perennial Species for Mountain Agroforestry

ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • Ahirwal, J., Saha, P., Nath, A., Nath, A. J., Deb, S., & Sahoo, U. K. (2021). Forest litter dynamics and environmental patterns in the Indian Himalayan region. Forest Ecology and Management, 499, 119612. https://doi.org/10.1016/j.foreco.2021.119612
  • Arunachalam, A., Pandey, H. N., Tripathi, R. S., & Maithani, K. (1996). Fine root decomposition and nutrient mineralization patterns in a subtropical humid forest following tree cutting. Forest Ecology and Management, 86(1–3), 141–150. https://doi.org/10.1016/S0378-1127(96)03784-X
  • Bargali, S. S., Singh, S. P., & Singh, R. P. (1993). Pattern of weight loss and nutrients release from decomposing leaf litter in age series of eucalyptus plantation. Soil Biology and Biochemistry, 25(12), 1731–1738. https://doi.org/10.1016/0038-0717(93)90177-D
  • Berg, B., Davey, M. P., De Marco, A., Emmett, B., Faituri, M., Hobbie, S. E., Johansson, M. B., Liu, C., McClaugherty, C., Norell, L., Rutigliano, F. A., Vesterdal, L., & Virzo De Santo, A. (2010). Factors influencing limit values for pine needle litter decomposition: A synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100(1–3), 57–73. https://doi.org/10.1007/s10533-009-9404-y
  • Berg, B., & McClaugherty, C. (1987). Nitrogen release from litter in relation to the disappearance of lignin. Biogeochemistry, 4(3), 219–224. https://doi.org/10.1007/BF02187367
  • Berg, B., & McClaugherty, C. (2008). Plant litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag Berlin Heidelberg. Germany. Germany.http://dx.doi.org/10.1007/978-3-540-74923-3. , , http://dx.doi.org/10.1007/978-3-540-74923-3 .
  • Blair, J. M. (1988). Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biology and Biochemistry, 20(5), 693–701. https://doi.org/10.1016/0038-0717(88)90154-X
  • Bockheim, J. G., Jepsen, E. A., & Heisey, D. M. (1991). Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in North Western Wisconsin. Canadian Journal of Forestry Research, 21(6), 803–812. https://doi.org/10.1139/x91-113
  • Brunetto, G., Ventura, M., Scandellari, F., Ceretta, C. A., Kaminski, J., Wellington de Melo, G., & Tagliavini, M. (2011). Nutrient release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutrient Cycling in Agroecosystem, 90(3), 299–360. https://doi.org/10.1007/s10705-011-9430-8
  • Butenschoen, O., Krashevska, V., Maraun, M., Marian, F., Sandmann, D., & Scheu, S. (2014). Litter mixture effects on decomposition in tropical montane rainforests vary strongly with time and turn negative at later stages of decay. Soil Biology and Biochemistry, 77(4), 121–128. https://doi.org/10.1016/j.soilbio.2014.06.019
  • Canhoto, C., & Graca, M. A. S. (1996). Decomposition of Eucalyptus globules leaves and three native leaf species (Alnus glutinosa, Castanea sativa, Quercus faginea) in a Portuguese low order stream. Hydrobiologia, 333(2), 79–85. https://doi.org/10.1007/BF00017570
  • Chhetri, R., Toomsan, B., Kaewpradit, W., & Limpinuntana, V. (2012). Mass loss, nitrogen, phosphorus and potassium release patterns and non-additive interaction in a decomposition study of Chir pine (Pinus roxburghi) and oak (Quercus griffithii). International Journal of Agricultural Research, 7(7), 332–344. https://doi.org/10.3923/ijar.2012.332.344
  • Conuteaux, M. M., Bottner, P., & Berg, B. (1995). Litter decomposition, climate and litter quality. Trends in Ecology & Evolution, 10(2), 63–66. https://doi.org/10.1016/S0169-5347(00)88978-8
  • Cornelissen, J. H. C. (1996). An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology, 84(4), 573–582. https://doi.org/10.2307/2261479
  • Das, C., & Mondal, N. K. (2016). Litterfall, decomposition and nutrient release of Shorea robusta and Tectona grandis in a sub-tropical forest of West Bengal, Eastern India. Journal of Forestry Research, 27(5), 1055–1065. https://doi.org/10.1007/s11676-016-0208-3
  • Eason, W. R., & Newman, E. I. (1990). Rapid loss of phosphorus from dying ryegrass roots: The chemical components involved. Oecologia, 84(3), 359–361. https://doi.org/10.1007/BF00329759
  • Garcia-Palacios, P., Maestre, F. T., Kattge, J., Wall, D. H., & Klironomos, J. (2013). Climatic and litter quality differently modulate the effect of soil fauna on litter decomposition across biomes. Ecology Letters, 16(8), 1045–1053. https://doi.org/10.1111/ele.12137
  • Garcia-Palacios, P., Shaw, E. A., Wall, D. H., & Hättenschwiler, S. (2016). Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecology Letters, 19(5), 554–563. https://doi.org/10.1111/ele.12590
  • George, T. S., Gregory, P. J., Robinson, J. S., Buresh, R. J., & Jama, B. A. (2001). Tithonia diversifolia: Variations in leaf nutrient concentration and implications for biomass transfer. Agroforestry Systems, 52(3), 199–205. https://doi.org/10.1023/A:1011896705132
  • Hasanuzzaman, M., & Mahmood, H. (2014). Nutrient leaching from leaf litter of cropland agroforest tree species of Bangladesh. Journal of Forest and Environmental Science, 30(2), 208–217. https://doi.org/10.7747/JFS.2014.30.2.208
  • Hättenschwiler, S., & Bracht Jorgensen, H. (2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 98(4), 754–764. https://doi.org/10.1111/j.1365-2745.2010.01671.x
  • Hättenschwiler, S., Coq, S., Barantal, S., & Handa, I. T. (2011). Leaf traits and decomposition in tropical rainforests: Reviewing some commonly held views and towards a new hypothesis. New Phytologist, 189(4), 950–965. https://doi.org/10.1111/j.1469-8137.2010.03483.x
  • Hossain, M., Siddique, M. R. H., Rahman, M. S., Hossain, M. Z., & Hasan, M. M. (2011). Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. Journal of Forestry Research, 22(4), 577–582. https://doi.org/10.1007/s11676-011-0175-7
  • ICAR (2008). Indian Council of Agricultural Research (ICAR) Reporter April- June, 2008. P 9.
  • Isaac, S. R., & Nair, M. A. (2005). Biodegradation of leaf litter in the warm humid tropics of Kerala, India. Soil Biology and Biochemistry, 37(9), 1656–1664. https://doi.org/10.1016/j.soilbio.2005.02.002
  • Jeong, J., Lee, I. K., Lim, J. H., & Kim, C. (2015). Nutrient dynamics by decomposing leaf litter at the Guemsan (Mt.) long-term ecological research site, Korea. Forest Science Technology, 11(2), 97–103. https://doi.org/10.1080/21580103.2014.966863
  • Kardol, P., Reynolds, W. N., Norby, R. J., & Classen, A. T. (2011). Climate change effects on soil micro-arthropod abundance and community structure. Applied Soil Ecology, 47(1), 37–44. https://doi.org/10.1016/j.apsoil.2010.11.001
  • Lewis, G., Schrire, B., MacKinder, B., & Lock, M. (2005). Legumes of the world. The RoyalBotanic Gardens.
  • Lin, Y. M., Liu, J. W., Xiang, P., Lin, P., Ye, G. F., Sternberg, L., & da, S. L. (2006). Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China. Biogeochemistry, 78(3), 343–359. https://doi.org/10.1007/s10533-005-4427-5
  • Mafongoya, P. L., Giller, K. E., & Palm, C. A. (1998). Decomposition and nitrogen release patterned of tree pruning and litter. Agroforestry Systems, 38(1/3), 77–97. https://doi.org/10.1023/A:1005978101429
  • Mahmood, H., Siddique, M. R. H., & Abdullah, S. M. R. (2014). Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the Sundarbans, Bangladesh. Wetlands, 34(3), 439–448. https://doi.org/10.1007/s13157-013-0510-1
  • Malick, C. P., & Singh, M. B. (1980). In: Plant enzymology and histo enzymology. Kalyani Publishers.
  • Manzoni, S., Trofymow, J. A., Jackson, R. B., & Porporato, A. (2010). Stoichiometric controls on carbon, nitrogen and phosphorus dynamics in decomposing leaf litter. Ecological Monographs, 80(1), 89–106. https://doi.org/10.1890/09-0179.1
  • Marschner, P. (2012). Marschner’s mineral nutition of higher plants (3rd ed.) Academic Press.
  • Matos, E. S., Mendonca, E. S., Lima, P. C., Coelho, M. S., Mateus, R. F., & Cardoso, I. M. (2008). Green manure in coffee ecosystems in the region of Zona da Mata, Minas Gerais: Characteristics and kinetics of carbon and nitrogen mineralization. The Revista Brasileira de Ciencia do Solo, 32(5), 2027–2035. https://doi.org/10.1590/S0100-06832008000500024
  • Mooshammer, M., Wanek, W., Schnecker, J., Wild, B., Leitner, S., & Hofhansl, F. (2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 93(4), 770–782. https://doi.org/10.1890/11-0721.1
  • Myers, R. J. K., Palm, C. A., Cuevas, E., Gunatilleke, I. U. N., & Brossard, M. (1994). The synchronization of nutrient mineralization and plant nutrient demand. In P. L. Woomer & M. J. Swift (Eds.), The biological management of tropical soil fertility (pp. 81–116). John Wiley and Sons.
  • Oladoye, O. A., Ola-Adams, B. A., Adedire, M. O., & Agboola, D. A. (2008). Nutrient dynamics and litter decomposition in Leucaena leucocephala (Lam.) De Wit plantation in the Nigerian Derived Savanna. West African Journal of Applied Ecology, 13(1), 96–103. https://doi.org/10.4314/wajae.v13i1.40587
  • Olson, J. S. (1963). Energy storage and the balance of producer and decomposer in ecological systems. Ecology, 44(2), 322–331. https://doi.org/10.2307/1932179
  • Ortega, L. H., & Marcos, M. L. F. (2000). Mineralization of Eucalyptus debris in two sites in NW Spain. In: M. Madeira & P. Khanna, editors Proceedings of the international symposium on managing forest soils for sustainable productivity. UTAD, Vila Real. Portugal: International tropical timber organization, pp 87–88.
  • Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G., & Giller, K. E. (2001). Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agriculture, Ecosystems and Environment, 83(1–2), 27–42. https://doi.org/10.1016/S0167-8809(00)00267-X
  • Palm, C. A., & Sanchez, P. A. (1990). Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica, 22(4), 330–338. https://doi.org/10.2307/2388550
  • Palm, C. A., & Sanchez, P. A. (1991). Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biology and Biochemistry, 23(1), 83–88. https://doi.org/10.1016/0038-0717(91)90166-H
  • Park, S., & Kang-Hyun, C. (2003). Nutrient leaching from leaf litter of emergent macrophyte (Zizaniaatifolia) and the effects ofwater temperature on the leaching process. Korean Journal of Biological Sciences, 7(4), 289–294. https://doi.org/10.1080/12265071.2003.9647718
  • Parton, W., Silver, W. L., Burke, I. C., Grassens, L., Harmon, M. E., & Currie, W. S. (2007). Global-scale similarities in nitrogen release patterns during long term decomposition. Science, 315(5810), 361–364. https://doi.org/10.1126/science.1134853
  • Peterson, D. L., & Rolfe, G. L. (1982). Nutrient dynamics and decomposition of litter fall in floodplain and upland forest of central Illinois. Forest Science, 28(4), 667–681 https://doi.org/10.6093/forest.science/28.4667 doi typed before giving the number be deleted .
  • Ribeiro, C., Madeira, M., & Araujo, M. C. (2002). Decomposition and nutrient release from leaf litter of Eucalyptus globules grown under different water and nutrient regimes. Forest Ecology and Management, 171(1–2), 31–41. https://doi.org/10.1016/S0378-1127(02)00459-0
  • Salinas, N., Malhi, Y., Meir, P. S., Roman-Cuesta, M., Huaman, R., Salinas, J., Hauman, D., Gibaja, V., Mamani, A., & Farfan, F. (2011). The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist, 189(4), 967–977. https://doi.org/10.1111/j.1469-8137.2010.03521.x
  • Santa Regina, I. (2001). Litterfall, decomposition and nutrient release in three semi-arid forests of the Duero basin, Spain. Forestry, 74(4), 347–358. https://doi.org/10.1093/forestry/74.4.347
  • Santonja, M., Fernandez, C., Proffit, M., Gers, C., Gauquelin, T., Reiter, I. M., Cramer, W., Baldy, V., & McCulley, R. (2017). Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. Journal of Ecology, 105(3), 801–815. https://doi.org/10.1111/1365-2745.12711
  • Schofield, J. A., Hagerman, A. E., & Harold, A. (1998). Loss of tannins and other phenolics from willow leaf litter. Journal of Chemical Ecology, 24(8), 1409–1421. https://doi.org/10.1023/A:1021287018787
  • Semwal, R. L., Maikhuri, R. K., Rao, K. S., Sen, K. K., & Saxena, K. G. (2003). Leaf litter decomposition and nutrient release patterns of six multipurpose tree species of central Himalaya, India. Biomass and Bioenergy, 24(1), 3–11. https://doi.org/10.1016/S0961-9534(02)00087-9
  • Sharma, S., Arunachalam, K., & Arunachalam, A. (2018). Decomposition dynamics of Perilla leaves in a hill farming system. Agricultural Research, 7(3), 338–346. https://doi.org/10.1007/s40003-018-0320-z
  • Singh, A. N., & Singh, J. S. (1999). Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. Forest Ecology and Management, 119(1–3), 195–207. https://doi.org/10.1016/S0378-1127(98)00523-4
  • Songachan, L. S., & Kayang, H. (2018). Effects of Arbuscular Mycorrhizal Fungal Inoculation on Growth and Yield of Flemingia vestita Benth. ex Baker. International Journal of Agricultural Technology, 14(3), 377–388 https://www.ijat.aatsea.com.
  • Thomas, K., Jijeesh, C. M., & Seethalakshmi, K. K. (2014). Litter production, decomposition and nutrient mineralization dynamics of Ochlandra setigera: A rare bamboo species of Nilgiri Biosphere Reserve, India. Journal of Forestry Research, 25(3), 579–584. https://doi.org/10.1007/s11676-014-0497-3
  • Tian, G., Kang, B. T., & Brussaard, L. (1992). Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions-Decomposition and nutrient release. Soil Biology and Biochemistry, 24(10), 1051–1060. https://doi.org/10.1016/0038-0717(92)90035-V
  • Upadhyaya, K., Arunachalam, A., & Arunachalam, K. (2012b). Decomposition and nutrient release patterns of Phyllostachys bambusoides and Arundinaria racemose, India. Journal of Forestry Research, 23(2), 245–252. https://doi.org/10.1007/s11676-012-0250-8
  • Upadhyaya, K., Sahoo, U. K., Vanlalhriatpuia, K., & Roy, S. (2012a). Decomposition dynamics and nutrient release pattern from leaf litters of five commonly occurring homegrarden tree species of Mizoram, India. Journal of Sustainable Forestry, 31(8), 711–726. https://doi.org/10.1080/10549811.2012.706495
  • Valiela, I., Teal, J. M., Allen, S. D., Van Etten, R., Goehringer, D., & Volkmann, S. (1985). Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of aboveground organic matter. Journal of Experimental Marine Biology and Ecology, 89(1), 29–54. https://doi.org/10.1016/0022-0981(85)90080-2
  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation of animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Ventura, M., Scandellari, F., Bonora, E., & Tagliavini, M. (2010). Nutrient release during decomposition of leaf litter in a peach (Prunu spersica L.) orchard. Nutrient Cycling in Agroecosystems, 87(1), 115–125. https://doi.org/10.1007/s10705-009-9317-0
  • Vitousek, P. M., Turner, D. R., Parton, W. J., & Sanford, R. L. (1994). Litter decomposition on the Mauna Lao environmental matrix, Hawaii: Patterns, mechanisms and models. Ecology, 75(2), 418–429. https://doi.org/10.2307/1939545
  • Vivanco, L., & Austin, A. T. (2008). Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. Journal of Ecology, 96(4), 727–736. https://doi.org/10.1111/j.1365-2745.2008.01393.x
  • Yadav, R. S., Yadav, B. L., & Chhipa, B. R. (2008). Litter dynamics and soil properties under different tree species in a semi-arid region of Rajasthan, India. Agroforestry Systems, 73(1), 1–12. https://doi.org/10.1007/s10457-008-9106-9
  • Zhou, G., Guan, L., Wei, X., Tang, X., Liu, S., Liu, J., Zhang, D., & Yan, J. (2008). Factors influencing leaf litter decomposition: An intersite decomposition experiment across China. Plant and Soil, 311(1–2), 61–72. https://doi.org/10.1007/s11104-008-9658-5
  • Zhou, D., Hui, D., Luo, Y., & Zhou, G. (2008). Rates of litter decomposition in terrestrial ecosystems: A global patterns and controlling factors. Journal of Plant Ecology, 1(2), 85–93. https://doi.org/10.1093/jpe/rtn002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.