348
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Effect of Drought Stress on Physio-biochemical Traits and Secondary Metabolites Production in the Woody Species Pinus Halepensis Mill. At a Juvenile Development Stage

, , , , &

References

  • Abrams, M. D. (1988). Sources of variation in osmotic potentials with special reference to North American tree species. Forest Science, 34(4), 1030–1046 .
  • Abrams, M. D., Kubiske, M. E., & Steiner, K. C. (1990). Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh.: Photosynthesis, water relations and leaf morphology. Tree Physiology, 6(3), 305–315. https://doi.org/10.1093/treephys/6.3.305
  • Agati, G., & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186(4), 786–793. https://doi.org/10.1111/j.1469-8137.2010.03269.x
  • Aron, D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
  • Ayari, A., Moya, D., Rejeb, M. N., Ben Mansoura, A., Albouchi, A., De Las Heras, J., Fezzani, T., & Henchi, B. (2011). Geographical variation on cone and seed production of natural Pinus halepensis Mill. forests in Tunisia. Journal of Arid Environments, 75(5), 403–410. https://doi.org/10.1016/j.jaridenv.2011.01.001
  • Ayari, A., Zubizarreta-Gerendiain, A., Tome, M., Tome, J., Garchi, S., & Henchi, B. (2012). Stand, tree and crown variables affecting cone crop and seed yield of Aleppo pine forests in different bioclimatic regions of Tunisia. Forest Systems, 21(1), 128–140. https://doi.org/10.5424/fs/2112211-11463
  • Bachtobji, B. B., Khorchani, A., Guibal, F., El Aouni, M. H., & Khaldi, A. (2017). Dendroecological study of Pinus halepensis and Pinus pinea in northeast coastal dunes in Tunisia according to distance from the shoreline and dieback intensity. Dendrochronologia, 45, 62–72. https://doi.org/10.1016/j.dendro.2017.06.008
  • Bahreininejad, B., Razmjoo, J., & Mirza, M. (2014). Effect of water stress on productivity and essential oil content and composition of Thymus carmanicus. Journal of Essential Oil Bearing Plants, 17(5), 717–725. https://doi.org/10.1080/0972060X.2014.901605
  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. http://www.jstor.org/stable/42932378
  • Bistgani, Z. E., Siadat, S. A., Bakhshandeh, A., Pirbalouti, A. G., & Hashemi, M. (2017). Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal, 5(5), 407–415. https://doi.org/10.1016/j.cj.2017.04.003
  • Biswas, S., Koul, M., & Bhatnagar, A. K. (2011). Effect of salt, drought and metal stress on essential oil yield and quality in plants. Natural Product Communications, 6(10), 1559–1564. https://doi.org/10.1177/1934578X1100601036
  • Bongarten, B. C., & Teskey, R. O. (1986). Water relations of loblolly pine seedlings from diverse geographic origins. Tree Physiology, 1(3), 265–276. https://doi.org/10.1093/treephys/1.3.265
  • Borghetti, M., Leonardi, S., Raschi, A., Snyderman, D., & Tognetti, R. (1993). Ecotypic variation of xylem embolism, phenological traits, growth parameters and allozyme characteristics in Fagus sylvatica. Functional Ecology, 7(6), 713–720. https://doi.org/10.2307/2390193
  • Braatne, J. H., Hinckley, T. M., & Stettler, R. F. (1992). Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoides and their F1 hybrids. Tree Physiology, 11(4), 325–339. https://doi.org/10.1093/treephys/11.4.325
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Cakmak, I., & Marschner, H. (1992). Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves. Plant Physiology, 98(4), 1222–1227. https://doi.org/10.1104/pp.98.4.1222
  • Calamassi, R. (1986). Caractérisation de quelques provenances de Pinus halepensis sur la base de la structure anatomique et morphologique des aguilles. Annals of Forest Science, 43(3), 281–289. https://doi.org/10.1051/forest:19860301
  • Caser, M., Demasi, S., Victorino, Í. M. M., Donno, D., Faccio, A., Lumini, E., Bianciotto, V., & Scariot, V. (2019). Arbuscular mycorrhizal fungi modulate the crop performance and metabolic profile of saffron in soilless cultivation. Agronomy, 9(5), 232. https://doi.org/10.3390/agronomy9050232
  • Chakroun, M. L. (1986). Le pin d’Alep en Tunisie. Le pin d’Alep et le pin brutia dans la sylviculture méditerranéenne. CIHEAM.
  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076
  • Cheikh-Rouhou, S., Hentati, B., Besbes, S., Blecker, C., Deroanne, C., & Attia, H. (2006). Chemical Composition and Lipid Fraction Characteristics of Aleppo Pine (Pinus halepensis Mill.) Seeds Cultivated in Tunisia. Food Science and Technology International, 12(5), 407–416. https://doi.org/10.1177/1082013206069910
  • Cherif, S., Ezzine, O., Khouja, M. L., & Nasr, Z. (2019). Hydraulic traits performances of three pine species in Tunisia. Journal of Agricultural Science, 11(13), 20–29. https://doi.org/10.5539/jas.v11n13p20
  • Cochard, H. (1992). Vulnerability of several conifers to air embolism. Tree Physiology, 11(1), 73–83. https://doi.org/10.1093/treephys/11.1.73
  • Delauney, A. J., & Verma, D. P. S. (1990). A soybean gene encoding pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Molecular General Genetics, 221(3), 299–305. https://doi.org/10.1007/BF00259392
  • Deligoz, A., & Gur, M. (2015). Morphological, physiological and biochemical responses to drought stress of stone pine (Pinus pinea L.) seedlings. Acta Physiologiae Plantarum, 37(11), 243. https://doi.org/10.1007/s11738-015-1998-1
  • Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654–660. https://doi.org/10.1016/j.foodchem.2005.04.028
  • El Guemri, R., Jaouadi, W., Mechergui, K., Alsubeie, M., Naghmouchi, S., El Ouellani, S., & Khouja, M. L. (2019). Morphological characteristics and variation of wood, cone and seed productions in the reforestation of Aleppo pine in Northeastern Tunisia using terrestrial and spatial index approaches. Ekológia, 38(3), 273–291. https://doi.org/10.2478/eko-2019-0021
  • Elaieb, M., Candelier, K., Pétrissans, A., Dumarçay, S., Gérardin, P., & Pétrissans, M. (2015). Heat treatment of Tunisian soft wood species: Effect on the durability, chemical modifications and mechanical properties. Maderas: Ciencia y tecnología, 17(4), 699–710. http://dx.doi.org/10.4067/S0718-221X2015005000061
  • Falusi, M., Calamassi, R., & Tocci, A. (1983). Sensitivity of seed germination and seedling root growth to moisture stress in four provenances of Pinus halepensis Mill. Silvae Genetica, 32(1–2), 4–9.
  • Fekih, N., Allali, H., Merghache, S., Chaïb, F., Merghache, D., El Amine, M., Djabou, N., Muselli, A., Tabti, B., & Costa, J. (2014). Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria. Asian Pacific Journal of Tropical Disease, 4(2), 97. https://doi.org/10.1016/S2222-1808(14)60323-6
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269–279. https://doi.org/10.1055/s-2004-820867
  • Galmés, J., Medrano, H., & Flexa, F. (2007). Limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175(1), 81–93. https://doi.org/10.1111/j.1469-8137.2007.02087.x
  • Gharibi, S., Tabatabaei, B. E., Saeidi, G., & Goli, S. A. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of achillea species. Biotechnology and Applied Biochemistry, 178(4), 796–809. https://doi.org/10.1007/s12010-015-1909-3
  • Ghazghazi, H., Essghaier, B., Jawadi, I., Riahi, L., Ben Salem, R., & Rigane, G. (2021b). Effects of fruit maturity stages on GC-FID fatty acid profiles, phenolic contents, and biological activities of Eucalyptus marginata L. Journal of Food Quality, 2021, 5546969. https://doi.org/10.1155/2021/5546969
  • Ghazghazi, H., Fkiri, S., Zouaoui, R., El Aloui, M., & Nasr, Z. (2021a). Intraspecific variability to drought impacts In Pinus Halepensis Provenances Trials. Journal of Sustainable Forestry, 40(7), 721–732. https://doi.org/10.1080/10549811.2020.1813595
  • Grossnickle, S. C. (2012). Why seedlings survive: Influence of plant. attributes. New Forests, 43(5–6), 711–738. https://doi.org/10.1007/s11056-012-9336-6
  • Gur, A., Demirel, U., Ozden, M., Kahraman, A., & Copur, O. (2010). Diurnal gradual heat stress affects antioxidant enzymes, proline accumulation and some physiological components in cotton (Gossypium hirsutum L.). African Journal of Biotechnology, 9(7), 1008–1015. https://doi.org/10.5897/AJB09.1590
  • Hameed, A., Goher, M., & Iqbal, N. (2012). Heat stress induced cell death, changes in antioxidants, lipid peroxidation and protease activity in wheat leaves. Journal of Plant Growth Regulation, 31(3), 283–291. https://doi.org/10.1007/s00344-011-9238-4
  • Hare, P. D., Cress, W. A., & Staden, J. V. (2002). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment, 21(6), 535–553. https://doi.org/10.1046/j.1365-3040.1998.00309.x
  • Hassanpour, H., Khavari-Nejad, R. A., Niknam, V., Razavi, K., & Najaf, F. (2014). Effect of penconazole and drought stress on the essential oil composition and gene expression of Mentha pulegium L. (Lamiaceae) at flowering stage. Acta Physiologiae Plantarum, 36(5), 1167–1175. https://doi.org/10.1007/s11738-014-1492-1
  • He, Y., & Huang, B. (2010). Differential responses to heat stress in activities and isozymes of four antioxidant enzymes for two cultivars of Kentucky bluegrass contrasting in heat tolerance. Journal of the American Society for Horticultural Science, 135(2), 116–124. https://doi.org/10.21273/JASHS.135.2.116
  • Jackson, G. E., Irvine, J., & Grace, J. (1995). Xylem cavitation in Scots pine and Sitka spruce saplings during water stress. Tree Physiology, 15(12), 783–790. https://doi.org/10.1093/treephys/15.12.783
  • Jeddi, K., & Chaieb, M. (2010). Soil properties and plant community in different aged Pinus halepensis Mill. plantations in arid Mediterranean areas: The case of Southern Tunisia. Land Degradation & Development, 21(1), 32–39. https://doi.org/10.1002/ldr.964
  • Jeddi, K., Cortina, J., & Chaieb, M. (2009). Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia. Journal of Arid Environments, 73(11), 1005–1013. https://doi.org/10.1016/j.jaridenv.2009.05.005
  • Kaundun, S. S., Lebreton, P., & Fady, B. (1998). Geographical variability of Pinus halepensis Mill. as revealed by foliar flavonoids. Biochemical Systematics and Ecology, 26(1), 83–96. https://doi.org/10.1016/S0305-1978(97)00092-6
  • Kemble, A. R., & MacPherson, H. T. (1954). Liberation of amino acids in perennial rye grass during wilting. Biochemical Journal, 58(1), 46–49. https://doi.org/10.1042/bj0580046
  • Khalil, T. M., Ajmal, M., Zeb, I., & Khan, M. A. (2020). Estimating impact of salinity on soil water potential dynamics using a novel approach. Journal of Engineering and Applied Sciences, 39(2), 154–163. https://doi.org/10.17582/journal.jeas/39.2.154.163
  • Kishor, P. B. K., Hong, Z., Miao, G. H., Hu, C. A. A., & Verma, D. P. S. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108(4), 1387–1394. https://doi.org/10.1104/pp.108.4.1387
  • Kraus, T. E., Mckersie, B. D., & Fletcher, R. A. (1995). Paclobutrazole induced tolerance of wheat leaves to paraquat may involve antioxidant enzyme activity. Journal of Plant Physiology, 145(4), 570–576. https://doi.org/10.1016/S0176-1617(11)81790-6
  • Le Houérou, H. N. (2000). Restoration and rehabilitation of arid and semiarid Mediterranean ecosystems in North Africa andWest Asia: A review. Arid Soil Research and Rehabilitation, 14(1), 3–14. https://doi.org/10.1080/089030600263139
  • Mafakheri, A. B., Siosemardeh, P. C., Bahramnejad, Y., Struik, T., & Sohrabi, S. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580–585.
  • Minervini, F., Missaoui, J., Celano, G., Calasso, M., Achour, L., Saidane, D., Gobbetti, M., & De Angelis, M. (2020). Use of Autochthonous Lactobacilli to Increase the Safety of Zgougou. Microorganisms, 8(1), 29. https://doi.org/10.3390/microorganisms8010029
  • Mohammadi, H., Akhondzadeh, M., Ghorbanpour, M., & Aghaee, A. (2020). Physiological responses and secondary metabolite ingredients in sage plants induced by 24-epibrassinolide foliar application under different water deficit regimes. Scientia Horticulturae, 263, 109139. https://doi.org/10.1016/j.scienta.2019.109139
  • Riahi, L., Chakroun, H., Klay, I., Masmoudi, A. S., Cherif, A., & Zoghlami, N. (2019). Metabolomic fingerprint of Mentha rotundifolia L. leaf tissues promotes this species as a potential candidate for sustainable production of biologically active molecules. Journal of Complementary & Integrative Medicine, 16(2), 20180048. https://doi.org/10.1515/jcim-2018-0048
  • Riahi, L., Cherif, H., Miladi, S., Neifar, M., Bejaoui, B., Chouchane, H., Masmoudi, A. S., & Cherif, A. (2020). Use of plant growth promoting bacteria as an efficient biotechnological tool to enhance the biomass and secondary metabolites production of the industrial crop Pelargonium graveolens L’Hér. under semi-controlled conditions. Industrial Crops and Products, 154, 112721. https://doi.org/10.1016/j.indcrop.2020.112721
  • Saad, H., Khoukh, A., Ayed, N., Charrier, B., & Charrier-elbouhtoury, F. (2014). Characterization of Tunisian Aleppo pine tannins for a potential use in wood adhesive formulation. Industrial Crops and Products, 61, 517–525. https://doi.org/10.1016/j.indcrop.2014.07.035
  • Sangwan, N. S., Farooqi, A. H. A., Shabih, F., & Sangwan, R. S. (2001). Regulation of essential oil production in plants. Plant Growth Regulation, 34, 3–21. https://doi.org/10.1023/A:1013386921596
  • Sarke, U., & Oba, S. (2018). Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186(4), 999–1016. https://doi.org/10.1007/s12010-018-2784-5
  • Shumway, D. L., Steiner, K. C., & Abrams, M. D. (1991). Effects of drought stress on hydraulic architecture of seedlings from five populations of green ash. Canadian Journal of Botany, 69(10), 2158–2164. https://doi.org/10.1139/b91-270
  • Singleton, V. L., & Rosi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
  • Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytology, 125(1), 27–58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  • Srinivas, N., Rashmi, K., & Raghavarao, K. (1999). Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochemistry, 35(1–2), 43–48. https://doi.org/10.1016/S0032-9592(99)00030-8
  • Sultan, M. A. R. F., Hui, L., Yang, L. J., & Xian, Z. H. (2012). Assessment of drought tolerance of some Triticum L. species through physiological indices. Czech Journal of Genetics and Plant Breeding, 48(4), 178–184. https://doi.org/10.17221/21/2012-CJGPB
  • Sun, B., Ricardo-da-silva, J. M., & Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry, 46(10), 4267–4274. https://doi.org/10.1021/jf980366j
  • Szabados, L., & Savouré, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15(2), 89–97. https://doi.org/10.1016/j.tplants.2009.11.009
  • Taïbi, K., Del Campo, A. D., Aguado, A., & Mulet, J. M. (2015). The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecological Engineering, 84, 218–228. https://doi.org/10.1016/j.ecoleng.2015.09.005
  • Taïbi, K., Del Campo, A. D., Mulet, J. M., Flors, J., & Aguado, A. (2014). Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New Forests, 45(5), 603–624. https://doi.org/10.1007/s11056-014-9423-y
  • Tsitsoni, T. K. (2009). Seed quality characteristics of Pinus halepensis – Seed germination strategy and early seedling growth. Web Ecology, 9(1), 72–76. https://doi.org/10.5194/we-9-72-2009
  • Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58(1–3), 339–366. https://doi.org/10.1007/BF02180062
  • Villar-Salvador, P., Peñuelas, J. L., Nicolás-Peragón, J. L., & Domínguez-Lerena, S. (2013). Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New Forests, 44(5), 733–751. https://doi.org/10.1007/s11056-013-9374-8
  • Wang, J., Ives, N. E., & Lechowicz, M. J. (1992). The relation of foliar phenology to xylem embolism in trees. Functional Ecology, 6(4), 469–475. https://doi.org/10.2307/2389285
  • Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11), bio035279. https://doi.org/10.1242/bio.035279
  • White, D. A., Turner, N. C., & Galbraith, J. H. (2000). Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiology, 20(17), 1157–1165. https://doi.org/10.1093/treephys/20.17.1157
  • Xiong, L., & Zhu, J. K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment, 25(2), 131–139. https://doi.org/10.1046/j.1365-3040.2002.00782.x
  • Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508–514. https://doi.org/10.1042/bj0570508
  • Zahir, A., Abbasi, B. H., Adil, M., Anjum, S., Zia, & Ihsan-Ul-Haq, M. (2014). Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum. Applied Biochemistry and Biotechnology, 174(2), 693–707. https://doi.org/10.1007/s12010-014-1098-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.