357
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience

, , &
Pages 157-186 | Received 21 Aug 2014, Accepted 08 Jul 2015, Published online: 24 Aug 2015

References

  • AMPL Home Page. Available at http://www.ampl.com.
  • R. Andreani, E.G. Birgin, J.M. Martínez, and M.L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence constraint qualification, Math. Program. 111 (2008), pp. 5–32. Available at http://dx.doi.org/10.1007/s10107-006-0077-1. doi: 10.1007/s10107-006-0077-1
  • E.G. Birgin and J.M. Martínez, Improving ultimate convergence of an augmented Lagrangian method, Optim. Methods Softw. 23 (2008), pp. 177–195. doi: 10.1080/10556780701577730
  • E.G. Birgin and J.M. Martínez, Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization, Comput. Optim. Appl. 51 (2012), pp. 941–965. Available at http://dx.doi.org/10.1007/s10589-011-9396-0. doi: 10.1007/s10589-011-9396-0
  • E.G. Birgin and J.M. Martínez, Practical Augmented Lagrangian Methods for Constrained Optimization, Fundamentals of Algorithms, SIAM, Philadelphia, PA, 2014.
  • A. Bondarenko, D. Bortz, and J.J. Moré, COPS: Large-scale nonlinearly constrained optimization problems, Technical Report ANL/MCS-TM-237, Mathematics and Computer Science division, Argonne National Laboratory, Argonne, IL, 1998, revised October 1999.
  • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn. 3 (2011), pp. 1–122. doi: 10.1561/2200000016
  • R.H. Byrd, G. Lopez-Calva, and J. Nocedal, A line search exact penalty method using steering rules, Math. Program. 133 (2012), pp. 39–73. doi: 10.1007/s10107-010-0408-0
  • R.H. Byrd, J. Nocedal, and R.A. Waltz, Steering exact penalty methods for nonlinear programming, Optim. Methods Softw. 23 (2008), pp. 197–213. Available at http://dx.doi.org/10.1080/10556780701394169. doi: 10.1080/10556780701394169
  • A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Global convergence of a class of trust region algorithms for optimization with simple bounds, SIAM J. Numer. Anal. 25 (1988), pp. 433–460. doi: 10.1137/0725029
  • A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Testing a class of methods for solving minimization problems with simple bounds on the variables, Math. Comput. 50 (1988), pp. 399–430. doi: 10.1090/S0025-5718-1988-0929544-3
  • A.R. Conn, N.I.M. Gould, and Ph.L. Toint, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal. 28 (1991), pp. 545–572. doi: 10.1137/0728030
  • A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Lancelot: A Fortran package for large-scale nonlinear optimization (Release A), Lecture Notes in Computation Mathematics 17, Springer Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1992.
  • A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Numerical experiments with the LANCELOT package (Release A) for large-scale nonlinear optimization, Math. Program. 73 (1996), pp. 73–110.
  • A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Trust-Region Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
  • F.E. Curtis, H. Jiang, and D.P. Robinson, An adaptive augmented Lagrangian method for large-scale constrained optimization, Math. Program. 152 (2015), pp. 201–245. doi: 10.1007/s10107-014-0784-y
  • F.E. Curtis, N.I.M. Gould, H. Jiang, and D.P. Robinson, Adaptive augmented Lagrangian methods: Algorithms and practical numerical experience. Available at http://xxx.tau.ac.il/abs/1408.4500, arXiv:1408.4500.
  • K.R. Davidson and A.P. Donsig, Real Analysis and Applications, Undergraduate Texts in Mathematics, Springer, New York, 2010. Available at http://dx.doi.org/10.1007/978-0-387-98098-0.
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002), pp. 201–213. doi: 10.1007/s101070100263
  • D. Fernández and M.V. Solodov, Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficiency condition, SIAM J. Optim. 22 (2012), pp. 384–407. doi: 10.1137/10081085X
  • R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Brooks/Cole—Thomson Learning, Pacific Grove, 2003.
  • D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Comput. Math. Appl. 2 (1976), pp. 17–40. doi: 10.1016/0898-1221(76)90003-1
  • R. Glowinski and A. Marroco, Sur l'Approximation, par Elements Finis d'Ordre Un, el la Resolution, par Penalisation-Dualité, d'une Classe de Problèmes de Dirichlet Nonlineares, Revue Française d'Automatique, Informatique et Recherche Opérationelle 9 (1975), pp. 41–76.
  • F.A. Gomes, M.C. Maciel, and J.M. Martínez, Nonlinear programming algorithms using trust regions and augmented lagrangians with nonmonotone penalty parameters, Math. Program. 84 (1999), pp. 161–200.
  • N.I.M. Gould, D. Orban, and Ph.L. Toint, CUTEr and sifdec: A constrained and unconstrained testing environment, revisited, ACM Trans. Math. Softw. 29 (2003), pp. 373–394. doi: 10.1145/962437.962439
  • N.I.M. Gould, D. Orban, and Ph.L. Toint, Galahad—a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization, ACM Trans. Math. Softw. 29 (2003), pp. 353–372. doi: 10.1145/962437.962438
  • N.I.M. Gould, D. Orban, and Ph.L. Toint, CUTEst: A constrained and unconstrained testing environment with safe threads for mathematical optimization, Comput. Optim. Appl. 60 (2015), pp. 545–557. doi: 10.1007/s10589-014-9687-3
  • M.R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969), pp. 303–320. doi: 10.1007/BF00927673
  • A.F. Izmailov and M.V. Solodov, On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers, Math. Program. 126 (2011), pp. 231–257. Available at http://dx.doi.org/10.1007/s10107-009-0279-4. doi: 10.1007/s10107-009-0279-4
  • M. Kočvara and M. Stingl, PENNON: A code for convex nonlinear and semidefinite programming, Optim. Methods Softw. 18 (2003), pp. 317–333. doi: 10.1080/1055678031000098773
  • M. Kočvara and M. Stingl, PENNON: A generalized augmented Lagrangian method for semidefinite programming, in High Performance Algorithms and Software for Nonlinear Optimization (Erice, 2001), Applied Optimization, Vol. 82, Kluwer Academic Publishing, Norwell, MA, 2003, pp. 303–321. Available at http://dx.doi.org/10.1007/978-1-4613-0241-4_14.
  • M. Mongeau and A. Sartenaer, Automatic decrease of the penalty parameter in exact penalty function methods, European J. Oper. Res. 83 (1995), pp. 686–699. doi: 10.1016/0377-2217(93)E0339-Y
  • J.L. Morales, A numerical study of limited memory BFGS methods, Appl. Math. Lett. 15 (2002), pp. 481–487. doi: 10.1016/S0893-9659(01)00162-8
  • J.J. Moré, Trust regions and projected gradients, in System Modelling and Optimization, Vol. 113, Lecture Notes in Control and Information Sciences, Masao Iri and Keiji Yajima eds., Springer Verlag, Heidelberg, Berlin, New York, 1988, pp. 1–13.
  • M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, Roger Fletcher ed., Academic Press, London and New York, 1969, pp. 283–298.
  • Z. Qin, D. Goldfarb, and S. Ma, An alternating direction method for total variation denoising, arXiv preprint (2011). Available at arXiv:1108.1587.
  • Ph.L. Toint, Nonlinear stepsize control, trust regions and regularizations for unconstrained optimization, Optim. Methods Softw. 28 (2013), pp. 82–95. Available at http://www.tandfonline.com/doi/abs/10.1080/10556788.2011.610458. doi: 10.1080/10556788.2011.610458
  • J. Yang, Y. Zhang, and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE J. Sel. Top. Signal Process. 4 (2010), pp. 288–297. doi: 10.1109/JSTSP.2010.2042333
  • R.D. Zimmerman, C.E. Murillo-Sánchez, and R.J. Thomas, Matpower: Steady-state operations, planning, and analysis tools for power systems research and education, IEEE Trans. Power Syst. 26 (2011), pp. 12–19. doi: 10.1109/TPWRS.2010.2051168

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.