122
Views
2
CrossRef citations to date
0
Altmetric
Articles

Optimal control of scalar conservation laws by on/off-switching

&
Pages 904-939 | Received 04 Jan 2016, Accepted 11 Sep 2016, Published online: 11 Oct 2016

References

  • S. Amin, F.M. Hante, and A.M. Bayen, Exponential stability of switched linear hyperbolic initial-boundary value problems, IEEE Trans. Automat. Control 57 (2012), pp. 291–301. doi: 10.1109/TAC.2011.2158171
  • F. Ancona and G.M. Coclite, On the attainable set for Temple class systems with boundary controls, SIAM J. Control Optim. 43 (2005), pp. 2166–2190 (electronic). doi: 10.1137/S0363012902407776
  • F. Ancona and A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim. 36 (1998), pp. 290–312 (electronic). doi: 10.1137/S0363012996304407
  • A. Aw and M. Rascle, Resurrection of ‘second order’ models of traffic flow, SIAM J. Appl. Math. 60 (2000), pp. 916–938 (electronic). doi: 10.1137/S0036139997332099
  • M.K. Banda, M. Herty, and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media 1 (2006), pp. 295–314. doi: 10.3934/nhm.2006.1.295
  • C. Bardos, A.Y. le Roux, and J.C. Nédélec, First order quasilinear equations with boundary conditions, Commun. Partial Differ. Equ. 4 (1979), pp. 1017–1034. doi: 10.1080/03605307908820117
  • S. Bianchini, On the shift differentiability of the flow generated by a hyperbolic system of conservation laws, Discret. Contin. Dyn. Syst. 6 (2000), pp. 329–350. doi: 10.3934/dcds.2000.6.329
  • F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal: Theory, Methods Appl. 32 (1998), pp. 891–933. doi: 10.1016/S0362-546X(97)00536-1
  • A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, Vol. 20, Oxford University Press, Oxford, 2000, the one-dimensional Cauchy problem.
  • A. Bressan and G. Guerra, Shift-differentiability of the flow generated by a conservation law, Discret. Contin. Dyn. Syst. 3 (1997), pp. 35–58.
  • A. Bressan and A. Marson, A variational calculus for discontinuous solutions of systems of conservation laws, Comm. Partial Differ. Equ. 20 (1995), pp. 1491–1552. doi: 10.1080/03605309508821142
  • G. Bretti, R. Natalini, and B. Piccoli, Numerical approximations of a traffic flow model on networks, Netw. Heterog. Media 1 (2006), pp. 57–84. doi: 10.3934/nhm.2006.1.57
  • C. Castro, F. Palacios, and E. Zuazua, An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks, Math. Models Methods Appl. Sci. 18 (2008), pp. 369–416. doi: 10.1142/S0218202508002723
  • G.M. Coclite, M. Garavello, and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal. 36 (2005), pp. 1862–1886. doi: 10.1137/S0036141004402683
  • R.M. Colombo and M. Garavello, Stability and optimization in structured population models on graphs, Math. Biosci. Eng. 12 (2015), pp. 311–335.
  • R.M. Colombo and A. Groli, On the optimization of the initial boundary value problem for a conservation law, J. Math. Anal. Appl. 291 (2004), pp. 82–99. doi: 10.1016/j.jmaa.2003.10.032
  • R.M. Colombo, G. Guerra, M. Herty, and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim. 48 (2009), pp. 2032–2050. doi: 10.1137/080716372
  • E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasi-linear first-order equations in several space variables, Commun. Pure Appl. Math. 19 (1966), pp. 95–105. doi: 10.1002/cpa.3160190107
  • C.M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J. 26 (1977), pp. 1097–1119. doi: 10.1512/iumj.1977.26.26088
  • F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differ. Equ. 71 (1988), pp. 93–122. doi: 10.1016/0022-0396(88)90040-X
  • M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differ. Equ. 31 (2006), pp. 243–275. doi: 10.1080/03605300500358053
  • M. Giles and S. Ulbrich, Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 1: Linearized approximations and linearized output functionals, SIAM J. Numer. Anal. 48 (2010), pp. 882–904. doi: 10.1137/080727464
  • M. Giles and S. Ulbrich, Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 2: Adjoint approximations and extensions, SIAM J. Numer. Anal. 48 (2010), pp. 905–921. doi: 10.1137/09078078X
  • S. Göttlich, M. Herty, and A. Klar, Modelling and optimization of supply chains on complex networks, Commun. Math. Sci. 4 (2006), pp. 315–330. doi: 10.4310/CMS.2006.v4.n2.a3
  • M. Gugat, M. Herty, A. Klar, and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl. 126 (2005), pp. 589–616. doi: 10.1007/s10957-005-5499-z
  • M. Gugat, M. Herty, A. Klar, and G. Leugering, Conservation law constrained optimization based upon front-tracking, ESAIM Math. Model. Numer. Anal. 40 (2007), pp. 939–960. doi: 10.1051/m2an:2006037
  • M. Gugat, M. Herty, and V. Schleper, Flow control in gas networks: Exact controllability to a given demand, Math. Methods Appl. Sci. 34 (2011), pp. 745–757. doi: 10.1002/mma.1394
  • F.M. Hante and G. Leugering, Optimal boundary control of convection–reaction transport systems with binary control functions, in Hybrid Systems, Computation and Control, R. Majumdar and P. Tabuada, eds., Lecture Notes in Computer Science, Vol. 5469, Springer, Berlin, 2009, pp. 209–222.
  • F.M. Hante, G. Leugering, and T.I. Seidman, Modeling and analysis of modal switching in networked transport systems, Appl. Math. Optim. 59 (2009), pp. 275–292. doi: 10.1007/s00245-008-9057-6
  • F.M. Hante, G. Leugering, and T.I. Seidman, An augmented BV setting for feedback switching control, J. Syst. Sci. Complex. 23 (2010), pp. 456–466. doi: 10.1007/s11424-010-0140-0
  • M. Herty, C. Kirchner, and A. Klar, Instantaneous control for traffic flow, Math. Methods Appl. Sci. 30 (2007), pp. 153–169. doi: 10.1002/mma.779
  • M. Herty and B. Piccoli, A numerical method for the computation of tangent vectors to hyperbolic systems of conservation laws, Commun. Math. Sci. 14 (2016), pp. 683–704. doi: 10.4310/CMS.2016.v14.n3.a5
  • H. Holden and N.H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal. 26 (1995), pp. 999–1017. doi: 10.1137/S0036141093243289
  • T. Koch, B. Hiller, M. Pfetsch, and L. Schewe (eds.), Evaluating Gas Network Capacities, SIAM-MOS Series on Optimization, SIAM, Philadelphia, 2015.
  • S.N. Kružkov, Quasilinear parabolic equations and systems with two independent variables, Trudy Sem. Petrovsk. 5 (1979), pp. 217–272.
  • A.Y. le Roux, Étude du problème mixte pour une équation quasi-linéaire du premier ordre, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), pp. A351–A354.
  • P. LeFloch, Explicit formula for scalar nonlinear conservation laws with boundary condition, Math. Methods Appl. Sci. 10 (1988), pp. 265–287. doi: 10.1002/mma.1670100305
  • D. Liberzon, Switching in systems, control, iSystems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2003.
  • M.J. Lighthill and G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. A: Math, Phys. Eng. Sci. 229 (1955), pp. 317–345. doi: 10.1098/rspa.1955.0089
  • J. Málek, J. Nečas, M. Rokyta, and M. Růžička, Weak and Measure-valued Solutions to Evolutionary PDEs, Applied Mathematics Mathematical Computation, Vol. 13, Chapman & Hall, London, 1996.
  • S. Martin, First order quasilinear equations with boundary conditions in the framework, J. Differ. Equ. 236 (2007), pp. 375–406. doi: 10.1016/j.jde.2007.02.007
  • M. Nolte and D. Kröner, Convergence of well-balanced schemes for the initial boundary value problem for scalar conservation laws in 1D, in Hyperbolic Problems: Theory, Numerics, Applications, S. Benzoni-Gavage and D. Serre, eds., Springer, Berlin, 2008, pp. 791–798.
  • F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), pp. 729–734.
  • V. Perrollaz, Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law, Annales de l'Institut Henri Poincare (C) Non Linear Analysis 30 (2013), pp. 879–915. doi: 10.1016/j.anihpc.2012.12.003
  • S. Pfaff, Optimal control of hyperbolic conservation laws on bounded domains with switching controls, Ph.D. diss., TU Darmstadt, 2015.
  • S. Pfaff and S. Ulbrich, Optimal boundary control of nonlinear hyperbolic conservation laws with switched boundary data, SIAM J. Control Optim. 53 (2015), pp. 1250–1277. doi: 10.1137/140995799
  • S. Pfaff, S. Ulbrich, and G. Leugering, Optimal control of nonlinear hyperbolic conservation laws with switching, in Trends in PDE Constrained Optimization, International Series of Numerical Mathematics, Vol. 165, Springer International Publishing, 2014, pp. 109–131.
  • E. Polak, Optimization, Applied Mathematical Sciences, Vol. 124, Springer-Verlag, New York, 1997, algorithms and consistent approximations.
  • P.I. Richards, Shock waves on the highway, Operations Research 4 (1956), pp. 42–51. doi: 10.1287/opre.4.1.42
  • S. Ulbrich, On the existence and approximation of solutions for the optimal control of nonlinear hyperbolic conservation laws, in Optimal Control of Partial Differential Equations (Chemnitz, 1998), International Series of Numerical Mathematics, Vol. 133, K.-H. Hoffmann, G. Leugering, and F. Tröltzsch, eds., Birkhäuser, Basel, 1999, pp. 287–299.
  • S. Ulbrich, Optimal control of nonlinear hyperbolic conservation laws with source terms, Habilitation, Zentrum Mathematik, Technische Universität München, Germany, 2001.
  • S. Ulbrich, A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms, SIAM J. Control Optim. 41 (2002), pp. 740–797 (electronic). doi: 10.1137/S0363012900370764
  • S. Ulbrich, Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws, Syst. Control Lett. 48 (2003), pp. 313–328, optimization and control of distributed systems. doi: 10.1016/S0167-6911(02)00275-X
  • J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math. 90 (2002), pp. 563–596. doi: 10.1007/s002110100307

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.