399
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

A generic online acceleration scheme for optimization algorithms via relaxation and inertia

ORCID Icon & ORCID Icon
Pages 383-405 | Received 21 Feb 2017, Accepted 21 Oct 2017, Published online: 08 Nov 2017

References

  • F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optimiz. 14(3) (2004), pp. 773–782. doi: 10.1137/S1052623403427859
  • F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal. 9(1–2) (2001), pp. 3–11. doi: 10.1023/A:1011253113155
  • H. Attouch and J. Peypouquet, The rate of convergence of Nesterov's accelerated forward–backward method is actually faster than 1/k2, SIAM J. Optimiz. 26(3) (2016), pp. 1824–1834. doi: 10.1137/15M1046095
  • H.H. Bauschke, J.Y. Bello Cruz, T.T.A. Nghia, H.M. Phan and X. Wang, Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas–Rachford methods for two subspaces, Numer. Algorithms 73(1) (2016), pp. 33–76. doi: 10.1007/s11075-015-0085-4
  • H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011.
  • A. Beck and M. Teboulle, A fast iterative shrinkage–thresholding algorithm for linear inverse problems, SIAM J. Imaging. Sci. 2(1) (2009), pp. 183–202. doi: 10.1137/080716542
  • P. Bianchi, W. Hachem and F. Iutzeler, A coordinate descent primal–dual algorithm and application to distributed asynchronous optimization, IEEE Trans. Autom. Control 61(10) (2016), pp. 2947–2957. doi: 10.1109/TAC.2015.2512043
  • R.I. Boţ and E.R. Csetnek, An inertial alternating direction method of multipliers, Minimax Theor. Appl. 1 (2016), pp. 29–49.
  • R.I. Boţ, E.R. Csetnek and C. Hendrich, Inertial Douglas–Rachford splitting for monotone inclusion problems, Appl. Math. Comput. 256 (2015), pp. 472–487.
  • S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations Trends Mach. Learn. 3(1) (2011), pp. 1–122. doi: 10.1561/2200000016
  • A. Chambolle and C. Dossal, On the convergence of the iterates of ‘fista’, J. Optimiz. Theory App. 166(3) (2015), pp. 968–982. doi: 10.1007/s10957-015-0746-4
  • L. Condat, A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optimiz. Theory App. 158(2) (2013), pp. 460–479. doi: 10.1007/s10957-012-0245-9
  • J. Eckstein and D.P. Bertsekas, On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program. 55(1–3) (1992), pp. 293–318. doi: 10.1007/BF01581204
  • N. Flammarion and F. Bach, From averaging to acceleration, there is only a step-size, in Conference on Learning Theory, 2015, pp. 658–695.
  • E. Ghadimi, A. Teixeira, I. Shames and M. Johansson, Optimal parameter selection for the alternating direction method of multipliers (ADMM): Quadratic problems, IEEE Trans. Autom. Control 60(3) (2015), pp. 644–658. doi: 10.1109/TAC.2014.2354892
  • P. Giselsson, M. Fält and S. Boyd, Line search for averaged operator iteration, in 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016, pp. 1015–1022.
  • T. Goldstein, B. O'Donoghue, S. Setzer and R. Baraniuk, Fast alternating direction optimization methods, SIAM J. Imaging Sci. 7(3) (2014), pp. 1588–1623. doi: 10.1137/120896219
  • R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, NY, 2007.
  • F. Iutzeler, P. Bianchi, P. Ciblat and W. Hachem, Explicit convergence rate of a distributed alternating direction method of multipliers, IEEE Trans. Autom. Control. 61(4) (2013), pp. 892–904. doi: 10.1109/TAC.2015.2448011
  • F. Iutzeler, P. Bianchi, Ph. Ciblat and W. Hachem, Asynchronous distributed optimization using a randomized alternating direction method of multipliers, in Proc. IEEE Conf. Decision and Control (CDC), Florence, Italy, December 2013.
  • F. Iutzeler, P. Ciblat and W. Hachem, Analysis of sum-weight-like algorithms for averaging in wireless sensor networks, IEEE Trans. Sig. Process. 61(11) (2013), pp. 2802–2814. doi: 10.1109/TSP.2013.2256904
  • P. Johnstone and P. Moulin, A Lyapunov analysis of fista with local linear convergence for sparse optimization, preprint (2015). Available at arXiv preprint arXiv:1502.02281.
  • H. Lin, J. Mairal and Z. Harchaoui, A universal catalyst for first-order optimization, in Advances in Neural Information Processing Systems, 2015, pp. 3384–3392.
  • Q. Lin and L. Xiao, An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization, Comput. Optim. Appl. 60(3) (2014), pp. 633–674. doi: 10.1007/s10589-014-9694-4
  • P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16(6) (1979), pp. 964–979. doi: 10.1137/0716071
  • D. Lorenz and T. Pock, An inertial forward–backward algorithm for monotone inclusions, J. Math. Imaging Vis. 51(2) (2014), pp. 311–325. doi: 10.1007/s10851-014-0523-2
  • P.-E. Maingé, Convergence theorems for inertial km-type algorithms, J. Comput. Appl. Math. 219(1) (2008), pp. 223–236. doi: 10.1016/j.cam.2007.07.021
  • Z. Mu and Y. Peng, A note on the inertial proximal point method, Stat. Optim. Inf. Comput. 3(3) (2015), pp. 241–248. doi: 10.19139/124
  • Yu. Nesterov, A method of solving a convex programming problem with convergence rate o (1/k2), Soviet Math. Dokl. 27(2) (1983), pp. 372–376.
  • Yu. Nesterov, Smooth minimization of non-smooth functions, Math. Program. 103(1) (2005), pp. 127–152. doi: 10.1007/s10107-004-0552-5
  • B. O'Donoghue and E. Candes, Adaptive restart for accelerated gradient schemes, Found. Comput. Math. 15(3) (2013), pp. 715–732. doi: 10.1007/s10208-013-9150-3
  • B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys. 4(5) (1964), pp. 1–17. doi: 10.1016/0041-5553(64)90137-5
  • L.F. Richardson, The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Philos. Trans. R. Soc. Lond. 201 (1911), pp. 307–357. doi: 10.1098/rsta.1911.0009
  • Y. Saad, Iterative Methods for Sparse Linear Systems, Siam, 2003.
  • W. Shi, Q. Ling, K. Yuan, G. Wu and W. Yin, On the linear convergence of the ADMM in decentralized consensus optimization, IEEE Trans. Signal Process. 62(7) (2014), pp. 1750–1761. doi: 10.1109/TSP.2014.2304432
  • E. Shiu, Cyclically monotone linear operators, Proc. Am. Math. Soc. 59(1) (1976), pp. 127–132. doi: 10.1090/S0002-9939-1976-0410417-3
  • S. Tao, D. Boley and S. Zhang, Local linear convergence of ista and fista on the Lasso problem, SIAM J. Optimiz. 26(1) (2016), pp. 313–336. doi: 10.1137/151004549
  • A. Taylor, J. Hendrickx and F. Glineur, Smooth strongly convex interpolation and exact worst-case performance of first-order methods, Math. Program. 161(1–2) (2017), pp. 307–345. doi: 10.1007/s10107-016-1009-3
  • P. Tseng, On accelerated proximal gradient methods for convex–concave optimization, submitted, 2008.
  • E. Wei and A. Ozdaglar, On the O(1/k) convergence of asynchronous distributed alternating direction method of multipliers, In IEEE Global conference on signal and information processing (GlobalSIP), 2013, pp. 551–554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.