104
Views
0
CrossRef citations to date
0
Altmetric
Higher Order and Implicit Differentiation

Newton step methods for AD of an objective defined using implicit functions

&
Pages 907-923 | Received 17 Dec 2016, Accepted 15 Nov 2017, Published online: 07 Dec 2017

References

  • M. Bartholomew-Biggs, S. Brown, and B. Christianson, Automatic differentiation of algorithms, J. Comput. Appl. Math. 124 (2000), pp. 117–190. doi: 10.1016/S0377-0427(00)00422-2
  • B.M. Bell and J.V. Burke, Algorithmic differentiation of implicit functions and optimal values, in Advances in Automatic Differentiation, Springer Verlag, Berlin Heidelberg, 2008, pp. 67–77.
  • H.G. Bock, E. Kostina, and O. Kostyukova, Covariance matrices for parameter estimates of constrained parameter estimation problems, SIAM J. Matrix Anal. Appl. 29 (2007), pp. 626–642. doi: 10.1137/040617893
  • R.J. Boik, An implicit function approach to constrained optimization with applications to asymptotic expansions, J. Multivar. Anal. 99 (2008), pp. 465–489. doi: 10.1016/j.jmva.2007.01.005
  • R. Brent and H. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comput. Mach. 25 (1978), pp. 581–595. doi: 10.1145/322092.322099
  • B. Christianson, Reverse accumulation and implicit functions, Optim. Methods Softw. 9 (1998), pp. 307–322. doi: 10.1080/10556789808805697
  • B. Efron and D.V. Hinkley, Assessing the accuracy of the maximum likelihood estimator: Observed versus expected fisher information, Biometrika 65 (1978), pp. 457–482. doi: 10.1093/biomet/65.3.457
  • R.D. Gibbons and D. Hedeker, Applications of mixed-effects models in biostatistics, Ind. J. Stat. Ser. B (1960-2002) 62 (2000), pp. 70–103.
  • J.C. Gilbert, Automatic differentiation and iterative processes, Optim. Methods Softw. 1 (1992), pp. 13–21. doi: 10.1080/10556789208805503
  • M.B. Giles, Collected matrix derivative results for forward and reverse mode algorithmic differentiation, in Advances in Automatic Differentiation, Springer Verlag, 2008, pp. 35–44.
  • A. Griewank and A. Walther, Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Softw. 26 (2000), pp. 19–45. doi: 10.1145/347837.347846
  • A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd ed., SIAM, Philadelphia, PA, 2008.
  • M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bureau Standards 49 (1952), pp. 409–436. Available at http://www.nist.gov/nvl/jrespastpapers.cfm. doi: 10.6028/jres.049.044
  • J.L. Junkins, J.D. Turner, and M. Majji, Generalizations and applications of the lagrange implicit function theorem, J. Astronaut. Sci. 57 (2009), pp. 313–345. doi: 10.1007/BF03321507
  • V.V. Kalashnikov, S. Dempe, G.A. Pérez-Valdés, N.I. Kalashnykova, and J.F. Camacho-Vallejo, Bilevel programming and applications, Math. Probl. Eng. 2015 (2015), pp. 465–489.
  • A.G. Kalmikov and P. Heimbach, A hessian-based method for uncertainty quantification in global ocean state estimation, SIAM J. Sci. Comput. 36 (2014), pp. S267–S295. doi: 10.1137/130925311
  • G. Kedem, Automatic differentiation of computer programs, ACM Trans. Math. Softw. 6 (1980), pp. 150–165. doi: 10.1145/355887.355890
  • K. Kristensen, A. Nielsen, C.W. Berg, H. Skaug, and B.M. Bell, TMB: Automatic differentiation and Laplace approximation, J. Stat. Softw. 70 (2016), pp. 1–21. doi: 10.18637/jss.v070.i05
  • C. Park and D.J. Scheeres, Determination of optimal feedback terminal controllers for general boundary conditions using generating functions, Automatica 42 (2006), pp. 869–875. doi: 10.1016/j.automatica.2006.01.015
  • J.C. Pinheiro and D.M. Bates, Approximations to the log-likelihood function in the nonlinear mixed-effects model, J. Comput. Graph. Stat. 4 (1995), pp. 12–35.
  • H. Rue and S. Martino, Approximate Bayesian inference for hierarchical Gaussian Markov random field models, J. Stat. Plann. Inf. 137 (2007), pp. 3177–3192. doi: 10.1016/j.jspi.2006.07.016
  • G. Savard and J. Gauvin, Steepest descent direction for the nonlinear bilevel programming problem, Oper. Res. Lett. 15 (1994), pp. 265–273. doi: 10.1016/0167-6377(94)90086-8
  • H.J. Skaug and D.A. Fournier, Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models, Comput. Stat. Data Anal. 51 (2006), pp. 699–709. doi: 10.1016/j.csda.2006.03.005
  • F. Topputo and F. Bernelli-Zazzera, Approximate Solutions to Nonlinear Optimal Control Problems in Astrodynamics, ISRN Aerospace Engineering, 2013. Available at https://www.hindawi.com/journals/isrn/.
  • M. Wagner, A. Walther, and B.J. Schaefer, On the efficient computation of high-order derivatives for implicitly defined functions, Comput. Phys. Commun. 181 (2010), pp. 756–764. doi: 10.1016/j.cpc.2009.12.008
  • S.F. Walter, Structured higher-order algorithmic differentiation in the forward and reverse mode with application in optimum experimental design, Ph.D. diss., Humboldt-Universität zu Berlin, 2011.
  • S.F. Walter and L. Lehmann, Algorithmic differentiation in python with algopy, J. Comput. Sci. 4 (2013), pp. 334–344. doi: 10.1016/j.jocs.2011.10.007
  • A. Walther and A. Griewank, ADOL-C: A Package for the Automatic Differentiation of Algorithms Written in C/C++, Computational infrastructure for operations research: coin-or (2014), Available at https://projects.coin-or.org/ADOL-C/export/666/releases/2.5.2/ADOL-C/doc/adolc-manual.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.