110
Views
0
CrossRef citations to date
0
Altmetric
Generic Applications of Algorithmic Differentiation

Solving parameter estimation problems with discrete adjoint exponential integrators

Pages 750-770 | Received 20 Mar 2017, Accepted 08 Feb 2018, Published online: 22 Mar 2018

References

  • M. Alexe and A. Sandu, Forward and adjoint sensitivity analysis with continuous explicit Runge–Kutta schemes, Appl. Math. Comput. 208 (2009), pp. 328–34. Available at https://dx.doi.org/10.1016/j.amc.2008.11.035.
  • M. Alexe and A. Sandu, On the discrete adjoints of variable step time integrators, J. Comput. Appl. Math. 233 (2009), pp. 1005–1020. Available at https://dx.doi.org/10.1016/j.cam.2009.08.109.
  • M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, and G.N. Wells, The FEniCS project version 1.5, Arch. Numer. Soft. 3 (2015), pp. 9–23.
  • J.L. Anderson, Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A 61 (2009), pp. 72–83.
  • A. Augustine and A. Sandu, MATLODE: A MATLAB ODE solver and sensitivity analysis toolbox, ACM TOMS in preparation, 2018.
  • F. Bachinger, U. Langer, and J. Schöberl, Numerical analysis of nonlinear multiharmonic eddy current problems, Numer. Math. 100 (2005), pp. 593–616.
  • J.T. Betts, Practical methods for optimal control and estimation using nonlinear programming, SIAM, Philadelphia, 2010.
  • J.T. Betts and S.L. Campbell, Discretize then optimize, Proceedings of the SIAM Conference on Mathematics for Industry, Challenges and Frontiers, Toronto, Ontario, October 13–15, 2003.
  • J.T. Betts, S.L. Campbell, and A. Engelsone, Direct Transcription Solution of Inequality Constrained Optimal Control Problems, in American Control Conference, 2004. Proceedings of the 2004, Vol. 2, IEEE, 2004, pp. 1622–1626.
  • O. Bíró, Edge element formulations of eddy current problems, Comput. Methods Appl. Mech. Eng. 169 (1999), pp. 391–405.
  • J.F. Bonnans and J. Laurent-Varin, Computation of order conditions for symplectic partitioned Runge–Kutta schemes with application to optimal control, Numer. Math. 103 (2006), pp. 1–10.
  • R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput. 16 (1995), pp. 1190–1208.
  • C.M. Campos, S. Ober-Blöbaum, and E. Trélat, High order variational integrators in the optimal control of mechanical systems, preprint (2015). Available at arXiv:1502.00325.
  • H. Cheng, M. Jardak, M. Alexe, and A. Sandu, A hybrid approach to estimating error covariances in variational data assimilation, Tellus A 62 (2010), pp. 288–297. Available at https://dx.doi.org/10.1111/j.1600-0870.2010.00442.x.
  • D. Daescu, G. Carmichael, and A. Sandu, Adjoint implementation of Rosenbrock methods applied to variational data assimilation, in Air Pollution Modeling and its Application XIV, S. Gryning and F. Schiermeier, eds., Springer, 2000, pp. 361–369. Available at https://dx.doi.org/10.1111/j.1600-0870.2010.00442.x.
  • D. Daescu, G. Carmichael, and A. Sandu, Adjoint implementation of Rosenbrock methods applied to variational data assimilation problems, J. Comput. Phys. 165 (2000), pp. 496–510. Available at https://dx.doi.org/10.1006/jcph.2000.6622.
  • D. Daescu, A. Sandu, and G. Carmichael, Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: II – Numerical validation and applications, Atmos. Environ. 37 (2003), pp. 5097–5114. Available at https://dx.doi.org/10.1016/j.atmosenv.2003.08.020.
  • E.J. Fertig, J. Harlim, and B.R. Hunt, A comparative study of 4D-VAR and a 4D Ensemble Kalman Filter: perfect model simulations with Lorenz-96, Tellus A: Dynamic Meteorology and Oceanography 59 (2007), pp. 96–100.
  • C. Geuzaine and J.F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng. 79 (2009), pp. 1309–1331.
  • T. Gou and A. Sandu, Continuous versus discrete advection adjoints in chemical data assimilation with CMAQ, Atmos. Environ. 45 (2011), pp. 4868–4881. Available at http://dx.doi.org/10.1016/j.atmosenv.2011.06.015.
  • A. Griewank and A. Walther, Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Softw. 26 (2000), pp. 19–45.
  • A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia, 2008.
  • W.W. Hager, Runge–Kutta methods in optimal control and the transformed adjoint system, Numer. Math. 87 (2000), pp. 247–282.
  • E. Hairer and G. Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, 2nd ed., no. 14 in Springer Series in Computational Mathematics, Springer-Verlag, Berlin, Heidelberg, 1996.
  • L. Hascoët and V. Pascual, The Tapenade automatic differentiation tool: Principles, model, and specification, ACM Trans. Math. Softw. 39 (2013). Available at http://dx.doi.org/10.1145/2450153.2450158.
  • M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34 (1997), pp. 1911–1925.
  • E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, 2001. Available at http://www.scipy.org/.
  • E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, 2003.
  • J. Lang and J.G. Verwer, W-methods in optimal control, Numer. Math. 124 (2013), pp. 337–360.
  • J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear Non-Gaussian data assimilation, Mon. Weather Rev. 139 (2011), pp. 3964–3973.
  • H. Li, E. Kalnay, and T. Miyoshi, Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter, Q. J. R. Meteorol. Soc. 135 (2009), pp. 523–533.
  • A. Logg, K.A. Mardal, and G.N. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer-Verlag, Berlin, 2012.
  • E.N. Lorenz, Predictability – a problem partly solved, in Predictability of Weather and Climate, Cambridge University Press (CUP), 1996, pp. 40–58. Available at http://dx.doi.org/10.1017/cbo9780511617652.004.
  • D.C. Meeker, Finite element method magnetics, version 4.0.1 (03dec2006 build). Available at http://www.femm.info.
  • P. Miehe and A. Sandu, Forward, Tangent Linear, and Adjoint Runge Kutta Methods in KPP-2.2, in International Conference on Computational Science (ICCS 2006), Lecture Notes in Computer Science, Vol. 3993, Reading, UK, Springer, Berlin, Heidelberg, 2006, pp. 120–127. Available at 10.1007/11758532_18.
  • M. Narayanamurthi, P. Tranquilli, A. Sandu, and M. Tokman, EPIRK-W and EPIRK-K time discretization methods, CoRR abs/1701.06528 (2017). Available at http://arxiv.org/abs/1701.06528.
  • U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation, SIAM, Philadelphia 2011.
  • R.D. Neidinger, Introduction to automatic differentiation and MATLAB object-oriented programming, SIAM Rev. 52 (2010), pp. 545–563.
  • E. Ott, B.R. Hunt, I. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Corazza, E. Kalnay, D.J. Patil, and J.A. Yorke, A local ensemble Kalman filter for atmospheric data assimilation, Tellus A: Dynamic Meteorology and Oceanography 56 (2004), pp. 415–428.
  • P. Peterson, F2py: A tool for connecting Fortran and Python programs, Int. J. Comput. Sci. Eng. 4 (2009), pp. 296–305.
  • V. Rao and A. Sandu, An adjoint-based scalable algorithm for time-parallel integration, J. Comput. Sci. 5 (2014), pp. 76–84. Available at http://www.sciencedirect.com/science/article/pii/S1877750313000380, empowering Science through Computing + BioInspired Computing.
  • V. Rao and A. Sandu, A posteriori error estimates for the solution of variational inverse problems, SIAM/ASA J. Uncertain. Quant. 3 (2015), pp. 737–761. Available at http://dx.doi.org/10.1137/140990036.
  • E. Rosseel, H. De Gersem, and S. Vandewalle, Nonlinear stochastic Galerkin and collocation methods: Application to a ferromagnetic cylinder rotating at high speed, Commun. Comput. Phys. 8 (2010), pp. 947–975.
  • K. Rothauge, E. Haber, and U. Ascher, The discrete adjoint method for exponential integration, preprint (2016). Available at arXiv:1610.02596.
  • A. Sandu, On the properties of Runge-Kutta discrete adjoints, in Lecture Notes in Computer Science, Vol. LNCS 3994, Part IV, Springer, Berlin, Heidelberg, 2006, pp. 550–557. Available at http://dx.doi.org/10.1007/11758549_76.
  • A. Sandu, On consistency properties of discrete adjoint linear multistep methods, Tech. Rep. CS-TR-07-40, Computer Science Department, Virginia Tech, 2007. Available at http://vtechworks.lib.vt.edu/handle/10919/19773.
  • A. Sandu, Solution of inverse ODE problems using discrete adjoints, in Large Scale Inverse Problems and Quantification of Uncertainty, L. Biegler, G. Biros, O. Ghattas, M. Heinkenschloss, D. Keyes, B. Mallick, L. Tenorio, B. van Bloemen Waanders, and K. Willcox, eds., Chapter 12, John Wiley & Sons, 2010, pp. 345–364. Available at http://dx.doi.org/10.1002/9780470685853.ch16.
  • A. Sandu and P. Miehe, Forward, tangent linear, and adjoint Runge Kutta methods in KPP–2.2 for efficient chemical kinetic simulations, Int. J. Comput. Math. 87 (2010), pp. 2458–2479. Available at http://dl.acm.org/citation.cfm?id=1868060.
  • A. Sandu, D. Daescu, and G. Carmichael, Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: I – Theory and software tools, Atmos. Environ. 37 (2003), pp. 5083–5096. Available at http://dx.doi.org/10.1016/j.atmosenv.2003.08.019.
  • A. Sandu, D. Daescu, G. Carmichael, and T. Chai, Adjoint sensitivity analysis of regional air quality models, J. Comput. Phys. 204 (2005), pp. 222–252. Available at http://dx.doi.org/10.1016/j.jcp.2004.10.011.
  • J.M. Sanz-Serna, Symplectic Runge–Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more, SIAM Rev. 58 (2016), pp. 3–33.
  • R.B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Softw. 24 (1998), pp. 130–156. Available at http://dx.doi.org/10.1145/285861.285868.
  • K. Singh, P. Eller, A. Sandu, D. Henze, K. Bowman, M. Kopacz, and M. Lee, Towards the Construction of a Standard Adjoint GEOS-Chem Model, in Proceedings of the 2009 Spring Simulation Multiconference (SpringSim'09), High Performance Computing Symposium (HPC-2009), March, 2009, p. 8. Available at http://dl.acm.org/citation.cfm?id=1639809.1639925.
  • K. Singh, A. Sandu, M. Jardak, K.W. Bowman and M. Lee, A practical method to estimate information content in the context of 4D-VAR data assimilation, SIAM/ASA J. Uncertain. Quant. 1 (2013), pp. 106–138.
  • T. Steihaug and A. Wolfbrandt, An attempt to avoid Jacobian and nonlinear equations in the numerical solution of stiff differential equations, Math. Comput. 33 (1979), pp. 521–521. Available at http://dx.doi.org/10.1090/s0025-5718-1979-0521273-8.
  • M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods, J. Comput. Phys. 213 (2006), pp. 748–776.
  • M. Tokman, A new class of exponential propagation iterative methods of Runge–Kutta type (EPIRK), J. Comput. Phys. 230 (2011), pp. 8762–8778.
  • H. Zhang and A. Sandu, FATODE: A Library for Forward, Adjoint, and Tangent Linear Integration of ODEs, SIAM J. Sci. Comput. 36 (2014), pp. C504–C523. Available at http://dx.doi.org/10.1137/130912335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.