404
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Complexity and performance of an Augmented Lagrangian algorithm

ORCID Icon & ORCID Icon
Pages 885-920 | Received 04 Jul 2019, Accepted 21 Mar 2020, Published online: 31 Mar 2020

References

  • R. Andreani, E.G. Birgin, J.M. Martínez, and M.L. Schuverdt, On augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286–1309. doi: 10.1137/060654797
  • R. Andreani, E.G. Birgin, J.M. Martínez, and M.L. Schuverdt, Augmented Lagrangian methods under the Constant Positive Linear Dependence constraint qualification, Math. Program. 111 (2008), pp. 5–32. doi: 10.1007/s10107-006-0077-1
  • R. Andreani, E.G. Birgin, J.M. Martínez, and M.L. Schuverdt, Second-order negative-curvature methods for box-constrained and general constrained optimization, Comput. Optim. Appl. 45 (2010), pp. 209–236. doi: 10.1007/s10589-009-9240-y
  • R. Andreani, N.S. Fazzio, M.L. Schuverdt, and L.D. Secchin, A sequential optimality conditionrelated to the quasi-normality constraint qualification and its algorithmic consequences, SIAM J. Optim. 29 (2019), pp. 743–766. doi: 10.1137/17M1147330
  • R. Andreani, G. Haeser, and J.M. Martínez, On sequential optimality conditions for smooth constrained optimization, Optimization 60 (2011), pp. 627–641. doi: 10.1080/02331930903578700
  • R. Andreani, J.M. Martínez, A. Ramos, and P.J.S. Silva, A cone-continuity constraint qualification and algorithmic consequences, SIAM J. Optim. 26 (2016), pp. 96–110. doi: 10.1137/15M1008488
  • R. Andreani, J.M. Martínez, A. Ramos, and P.J.S. Silva, Strict constraint qualifications and sequential optimality conditions for constrained optimization, to appear in Math. Oper. Res. doi:10.1287/moor.2017.0879.
  • R. Andreani, J.M. Martínez, and L.T. Santos, Newton's method may fail to recognize proximity to optimal points in constrained optimization, Math. Program. 160 (2016), pp. 547–555. doi: 10.1007/s10107-016-0994-6
  • R. Andreani, J.M. Martínez, L.T. Santos, and B.F. Svaiter, On the behavior of constrained optimization methods when Lagrange multipliers do not exist, Optim. Methods Softw. 29 (2014), pp. 646–657. doi: 10.1080/10556788.2013.841692
  • R. Andreani, J.M. Martínez, and B.F. Svaiter, A new sequential optimality condition for constrained optimization and algorithmic consequences, SIAM J. Optim. 20 (2010), pp. 3533–3554. doi: 10.1137/090777189
  • M. Andretta, E.G. Birgin, and J.M. Martínez, Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization, Optimization 54 (2005), pp. 305–325. doi: 10.1080/02331930500100270
  • P. Armand and R. Omheni, A globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization, Optim. Methods Softw. 32 (2017), pp. 1–21. doi: 10.1080/10556788.2015.1025401
  • P. Armand and R. Omheni, A mixed logarithmic barrier-augmented Lagrangian method for nonlinear optimization, J. Optim. Theory Appl. 173 (2017), pp. 523–547. doi: 10.1007/s10957-017-1071-x
  • E.G. Birgin, D. Fernández, and J.M. Martínez, On the boundedness of penalty parameters in an Augmented Lagrangian method with lower level constraints, Optim. Methods Softw. 27 (2012), pp. 1001–1024. doi: 10.1080/10556788.2011.556634
  • E.G. Birgin, C.A. Floudas, and J.M. Martínez, Global minimization using an Augmented Lagrangian method with variable lower-level constraints, Math. Program. 125 (2010), pp. 139–162. doi: 10.1007/s10107-009-0264-y
  • E.G. Birgin and J.M. Martínez, Large-scale active-set box-constrained optimization method with spectral projected gradients, Comput. Optim. Appl. 23 (2002), pp. 101–125. doi: 10.1023/A:1019928808826
  • E.G. Birgin and J.M. Martínez, Structured minimal-memory inexact quasi-Newton method and secant preconditioners for Augmented Lagrangian optimization, Comput. Optim. Appl. 39 (2008), pp. 1–16. doi: 10.1007/s10589-007-9050-z
  • E.G. Birgin and J.M. Martínez, Improving ultimate convergence of an Augmented Lagrangian method, Optim. Methods Softw. 23 (2008), pp. 177–195. doi: 10.1080/10556780701577730
  • E.G. Birgin and J.M. Martínez, Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization, Comput. Optim. Appl. 51 (2012), pp. 941–965. doi: 10.1007/s10589-011-9396-0
  • E.G. Birgin and J.M. Martínez, Practical Augmented Lagrangian Methods for Constrained Optimization, Fundamentals of Algorithms Vol. 10, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014. doi:10.1137/1.9781611973365.
  • E.G. Birgin and J.M. Martínez, On regularization and active-set methods for constrained optimization, SIAM J. Optim. 28 (2018), pp. 1367–1395. doi: 10.1137/17M1127107
  • E.G. Birgin, J.M. Martínez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim. 10 (2000), pp. 1196–1211. doi: 10.1137/S1052623497330963
  • E.G. Birgin, J.M. Martínez, and M. Raydan, Algorithm 813: SPG – software for convex-constrained optimization, ACM Trans. Math. Softw. 27 (2001), pp. 340–349. doi: 10.1145/502800.502803
  • E.G. Birgin, J.M. Martínez, and M. Raydan, Spectral projected gradient methods: Review and perspectives, J. Stat. Softw. 60(3) (2014), pp. 1–21. doi:10.18637/jss.v060.i03.
  • C. Cartis, N.I.M. Gould, and Ph.L. Toint, On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming, SIAM J. Optim. 21 (2011), pp. 1721–1739. doi: 10.1137/11082381X
  • N. Chatzipanagiotis and M.M. Zavlanos, On the convergence of a distributed Augmented Lagrangian method for nonconvex optimization, IEEE Trans. Automat. Contr. 62 (2017), pp. 4405–4420. doi: 10.1109/TAC.2017.2658438
  • A.R. Conn, N.I.M. Gould, A. Sartenaer, and Ph.L. Toint, Convergence properties of an Augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints, SIAM J. Optim. 6 (1996), pp. 674–703. doi: 10.1137/S1052623493251463
  • A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Lancelot: A Fortran Package for Large ScaleNonlinear Optimization, Springer-Verlag, Berlin, 1992.
  • A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Trust Region Methods, Society for Industral and Applied Mathematics, Philadelphia, PA, 2000.
  • F.E. Curtis, N.I.M. Gould, H. Jiang, and D.P. Robinson, Adaptive Augmented Lagrangian methods: Algorithms and practical numerical experience, Optim. Methods Softw. 31 (2016), pp. 157–186. doi: 10.1080/10556788.2015.1071813
  • F.E. Curtis, H. Jiang, and D.P. Robinson, An adaptive Augmented Lagrangian method for large-scale constrained optimization, Math. Program. 152 (2015), pp. 201–245. doi: 10.1007/s10107-014-0784-y
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002), pp. 201–213. doi: 10.1007/s101070100263
  • Z. Dostál, Optimal Quadratic Programming Algorithms, Optimizaton and its Applications Vol. 23, Springer, New York, 2009.
  • Z. Dostál and P. Beremlijski, On convergence of inexact Augmented Lagrangians for separable and equality convex QCQP problems without constraint qualification, Adv. Electr. Electron. Eng. 15 (2017), pp. 215–222.
  • J. Eckstein and P.J.S. Silva, A practical relative error criterion for augmented Lagrangians, Math. Program. 141 (2013), pp. 319–348. doi: 10.1007/s10107-012-0528-9
  • D. Fernández and M.V. Solodov, Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition, SIAM J. Optim. 22 (2012), pp. 384–407. doi: 10.1137/10081085X
  • A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley & Sons, New York, 1968.
  • R. Fletcher, Practical Methods of Optimization, Academic Press, London, 1987.
  • R. Fletcher, Augmented Lagrangians, box constrained QP and extensions, IMA J. Numer. Anal. 37 (2017), pp. 1635–1656. doi: 10.1093/imanum/drx002
  • N.I.M. Gould, D. Orban, and Ph.L. Toint, CUTEst: A constrained and unconstrained testing environment with safe threads for mathematical optimization, Comput. Optim. Appl. 60 (2014), pp. 545–557. doi: 10.1007/s10589-014-9687-3
  • G.N. Grapiglia and Y. Yuan, On the complexity of an Augmented Lagrangian method for nonconvex optimization, Available at arXiv:1906.05622v1.
  • W.W. Hager and H. Zhang, A new active set algorithm for box constrained optimization, SIAM J. Optim. 17 (2006), pp. 526–557. doi: 10.1137/050635225
  • M.R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969), pp. 303–320. doi: 10.1007/BF00927673
  • M. Hong, Z.Q. Luo, and M. Razaviyayn, Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems, SIAM J. Optim. 26 (2016), pp. 337–364. doi: 10.1137/140990309
  • HSL, A collection of fortran codes for large scale scientific computation. Available at http://www.hsl.rl.ac.uk/.
  • A.F. Izmailov, M.V. Solodov, and E.I. Uskov, Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints, SIAM J. Optim. 22 (2012), pp. 1579–1606. doi: 10.1137/120868359
  • C. Kanzow and D. Steck, An example comparing the standard and safeguarded augmented Lagrangian methods, Oper. Res. Lett. 45 (2017), pp. 598–603. doi: 10.1016/j.orl.2017.09.005
  • J.M. Martínez and L. Qi, Inexact Newton methods for solving nonsmooth equation, J. Comput. Appl. Math. 60 (1995), pp. 127–145. doi: 10.1016/0377-0427(94)00088-I
  • M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., Academic Press, New York, NY, 1969, pp. 283–298.
  • L. Qi and J. Sun, A nonsmooth version of a Newton's method, Math. Program. 58 (1993), pp. 353–367. doi: 10.1007/BF01581275
  • R.T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Contr. Optim. 12 (1974), pp. 268–285. doi: 10.1137/0312021
  • R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976), pp. 97–116. doi: 10.1287/moor.1.2.97
  • M.V. Solodov and B.F. Svaiter, A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator, Set-Valued Anal. 7 (1999), pp. 323–345. doi: 10.1023/A:1008777829180
  • M.V. Solodov and B.F. Svaiter, A hybrid projection proximal point algorith, J. Convex Anal. 6 (1999), pp. 323–345.
  • M.V. Solodov and B.F. Svaiter, An inexact hybrid generalized extragradient-proximal point algorithm and some new results on the theory of Bregman functions, Math. Oper. Res. 25 (2000), pp. 214–230. doi: 10.1287/moor.25.2.214.12222
  • W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, Berlin, 2006.
  • A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program. 106 (2006), pp. 25–57. doi: 10.1007/s10107-004-0559-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.