69
Views
1
CrossRef citations to date
0
Altmetric
Special Issue: Advances in Continuous Optimization

Inexact tensor methods and their application to stochastic convex optimization

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 42-83 | Received 15 Mar 2022, Accepted 18 Sep 2023, Published online: 17 Nov 2023

References

  • A. Agafonov, D. Kamzolov, P. Dvurechensky, and A. Gasnikov, Inexact tensor methods and their application to stochastic convex optimization, preprint 2020. arXiv:2012.15636.
  • N. Agarwal and E. Hazan, Lower bounds for higher-order convex optimization, preprint 2017. arXiv:1710.10329.
  • Y. Arjevani, O. Shamir, and R. Shiff, Oracle complexity of second-order methods for smooth convex optimization, Math. Program. 178(1-2) (2019), pp. 327–360.
  • M. Baes, Estimate sequence methods: extensions and approximations. Institute for Operations Research, ETH, Zürich, Switzerland, 2009.
  • S. Bellavia and G. Gurioli, Stochastic analysis of an adaptive cubic regularization method under inexact gradient evaluations and dynamic hessian accuracy, Optimization 71(1) (2022), pp. 227–261.
  • S. Bellavia, G. Gurioli, and B. Morini, Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization, IMA J. Numerical Anal. 41(1) (2020), pp. 764–799.
  • S. Bellavia, G. Gurioli, B. Morini, and P.L. Toint, Adaptive regularization algorithms with inexact evaluations for nonconvex optimization, SIAM. J. Optim. 29(4) (2019), pp. 2881–2915.
  • S. Bellavia, G. Gurioli, B. Morini, and P.L. Toint, Adaptive regularization for nonconvex optimization using inexact function values and randomly perturbed derivatives, J. Complex. 68 (2022), p. 101591.
  • S. Bubeck, Q. Jiang, Y.T. Lee, Y. Li, and A. Sidford, Near-optimal method for highly smooth convex optimization, in Conference on Learning Theory, Phoenix, USA, PMLR, 2019, pp. 492–507.
  • C. Cartis, N.I. Gould, and P.L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results, Math. Program. 127(2) (2011), pp. 245–295.
  • C. Cartis, N.I.M. Gould, and P.L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity, Math. Program. 130(2) (2011), pp. 295–319.
  • C. Cartis, N.I. Gould, and P.L. Toint, Universal regularization methods: varying the power, the smoothness and the accuracy, SIAM. J. Optim. 29(1) (2019), pp. 595–615.
  • C. Cartis, N.I. Gould, and P.L. Toint, Improved second-order evaluation complexity for unconstrained nonlinear optimization using high-order regularized models, preprint 2017. arXiv:1708.04044.
  • C. Cartis and K. Scheinberg, Global convergence rate analysis of unconstrained optimization methods based on probabilistic models, Math. Program. 169 (2018), pp. 337–375.
  • P.L. Chebyshev, Collected Works [in Russian], Vol. 5, Izd. Akad. NaukSSSR, Moscow-Leningrad, 1951.
  • M. Cohen, J. Diakonikolas, and L. Orecchia, On acceleration with noise-corrupted gradients, in Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, J. Dy and A. Krause, eds., PMLR, Stockholmsmässan, Stockholm, 2018, pp. 1019–1028.
  • A. Conn, N. Gould, and P. Toint, Trust Region Methods, Society for Industrial and Applied Mathematics, 2000. https://doi.org/10.1137/1.9780898719857.
  • A. d'Aspremont, Smooth optimization with approximate gradient, SIAM. J. Optim. 19(3) (2008), pp. 1171–1183.
  • O. Devolder, Exactness, inexactness and stochasticity in first-order methods for large-scale convex optimization, Ph.D. diss., ICTEAM and CORE, Université Catholique de Louvain, 2013.
  • N. Doikov and Y. Nesterov, Convex optimization based on global lower second-order models, in Advances in Neural Information Processing Systems 33 proceedings (NeurIPS 2020), Curran Associates, Inc., 2020.
  • D. Dvinskikh and A. Gasnikov, Decentralized and parallelized primal and dual accelerated methods for stochastic convex programming problems, J. Inverse Ill Posed Problems 29(3) (2021), pp. 385–405.
  • P. Dvurechensky and A. Gasnikov, Stochastic intermediate gradient method for convex problems with stochastic inexact oracle, J. Optim. Theory. Appl. 171(1) (2016), pp. 121–145.
  • Y.G. Evtushenko, Optimization and Fast Automatic Differentiation, Computing Center of RAS, Moscow, 2013.
  • A. Gasnikov, D. Dvinskikh, P. Dvurechensky, D. Kamzolov, D. Pasechnyk, V. Matykhin, N. Tupitsa, and A. Chernov, Accelerated meta-algorithm for convex optimization, Comput. Math. Math. Phys. 61(1) (2020), pp. 17–28.
  • A.V. Gasnikov and P.E. Dvurechensky, Stochastic intermediate gradient method for convex optimization problems, Doklady Math. 93(2) (2016), pp. 148–151.
  • A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, C.A. Uribe, B. Jiang, H. Wang, S. Zhang, S. Bubeck, Q. Jiang, Y.T. Lee, Y. Li, and A. Sidford, Near optimal methods for minimizing convex functions with lipschitz pth derivatives, in Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, A. Beygelzimer and D. Hsu, eds., PMLR, Phoenix, 2019, pp. 1392–1393.
  • A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, and C.A. Uribe, Optimal tensor methods in smooth convex and uniformly convex optimization, in Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, A. Beygelzimer and D. Hsu, eds., PMLR, Phoenix, 2019, pp. 1374–1391.
  • A. Gasnikov, E. Gorbunov, D. Kovalev, A. Mohammed, and E. Chernousova, The global rate of convergence for optimal tensor methods in smooth convex optimization, Computer Res. Modell. 10(6) (2018), pp. 737–753.
  • A. Gasnikov, E. Gorbunov, D. Kovalev, A. Mokhammed, and E. Chernousova, Reachability of optimal convergence rate estimates for high-order numerical convex optimization methods, in Doklady Mathematics, Vol. 99, Moscow, Russia, Springer, 2019, pp. 91–94.
  • A. Gasnikov, Universal gradient descent, Modern numerical optimization methods. MCCME, 2020.
  • S. Ghadimi, H. Liu, and T. Zhang, Second-order methods with cubic regularization under inexact information, 2017. arXiv:1710.05782.
  • F. Hanzely, N. Doikov, Y. Nesterov, and P. Richtarik, Stochastic subspace cubic newton method, in International Conference on Machine Learning, PMLR, 2020, pp. 4027–4038.
  • K.H. Hoffmann and H.J. Kornstaedt, Higher-order necessary conditions in abstract mathematical programming, J. Optim. Theory. Appl. 26(4) (1978), pp. 533–568.
  • B. Jiang, H. Wang, and S. Zhang, An optimal high-order tensor method for convex optimization, in Conference on Learning Theory, Phoenix, USA, PMLR, 2019, pp. 1799–1801.
  • D. Kamzolov and A. Gasnikov, Near-optimal hyperfast second-order method for convex optimization and its sliding, preprint 2020. arXiv:2002.09050.
  • J.M. Kohler and A. Lucchi, Sub-sampled cubic regularization for non-convex optimization, in International Conference on Machine Learning, Sydney, Australia, PMLR, 2017, pp. 1895–1904.
  • D. Kovalev, K. Mishchenko, and P. Richtárik, Stochastic newton and cubic newton methods with simple local linear-quadratic rates, preprint 2019. arXiv:1912.01597.
  • H. Lu, R.M. Freund, and Y. Nesterov, Relatively smooth convex optimization by first-order methods, and applications, SIAM. J. Optim. 28(1) (2018), pp. 333–354.
  • A. Lucchi and J. Kohler, A sub-sampled tensor method for nonconvex optimization, IMA J. Numerical Anal. 43(5) (2023), pp. 2856–2891.
  • Z. Luo, L. Qi, and P.L. Toint, Tensor bernstein concentration inequalities with an application to sample estimators for high-order moments, Front. Math. China 15 (2020), pp. 367–384.
  • R.D. Monteiro and B.F. Svaiter, An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods, SIAM. J. Optim. 23(2) (2013), pp. 1092–1125.
  • Y. Nesterov, Accelerating the cubic regularization of newton's method on convex problems, Math. Program. 112(1) (2008), pp. 159–181.
  • Y. Nesterov, Lectures on Convex Optimization, Vol. 137. Springer, 2018. https://doi.org/10.1007/978-3-319-91578-4.
  • Y. Nesterov, Implementable tensor methods in unconstrained convex optimization, Math. Program. 186 (2019), pp. 157–183.
  • Y. Nesterov, Inexact high-order proximal-point methods with auxiliary search procedure, SIAM J. Optim. 31 (2021), pp. 2807–2828.
  • Y. Nesterov, Superfast second-order methods for unconstrained convex optimization, J. Optim. Theory. Appl. 191 (2021), pp. 1–30.
  • Y. Nesterov and B. Polyak, Cubic regularization of newton method and its global performance, Math. Program. 108(1) (2006), pp. 177–205.
  • S. Park, S.H. Jung, and P.M. Pardalos, Combining stochastic adaptive cubic regularization with negative curvature for nonconvex optimization, J. Optim. Theory. Appl. 184(3) (2020), pp. 953–971.
  • B.T. Polyak, Introduction to Optimization. Optimization Software, Vol. 1, Publications Division Inc., New York, 1987.
  • A. Rodomanov and D. Kropotov, A superlinearly-convergent proximal newton-type method for the optimization of finite sums, in International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, M. F. Balcan and K. Q. Weinberger, eds., PMLR, New York, NY, 2016, pp. 2597–2605.
  • F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov, D. Dvinskikh, M. Alkousa, D. Pasechnyuk, S. Artamonov, and V. Piskunova, Inexact model: a framework for optimization and variational inequalities. Optimization Methods and Software 36(6) (2021), pp. 1155–1201. 10.1080/10556788.2021.1924714.
  • L.N. Trefethen, Approximation Theory and Approximation Practice, Vol. 164, SIAM, 2019. https://doi.org/10.1137/1.9781611975949.
  • N. Tripuraneni, M. Stern, C. Jin, J. Regier, and M.I. Jordan, Stochastic cubic regularization for fast nonconvex optimization, in Advances in Neural Information Processing Systems, Vol. 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., Montreal, Canada., Curran Associates, Inc., 2018, pp. 2899–2908.
  • Z. Wang, Y. Zhou, Y. Liang, and G. Lan, A note on inexact condition for cubic regularized newton's method, preprint 2018. arXiv:1808.07384v1.
  • Z. Wang, Y. Zhou, Y. Liang, and G. Lan, Cubic regularization with momentum for nonconvex optimization, in Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Research, R. P. Adams and V. Gogate, eds., PMLR, Tel Aviv, 2020, pp. 313–322.
  • P. Xu, F. Roosta, and M.W. Mahoney, Newton-type methods for non-convex optimization under inexact hessian information, Math. Program. 184(1-2) (2020), pp. 35–70.
  • Y. Zhang and L. Xiao, Disco: distributed optimization for self-concordant empirical loss, in International Conference on Machine Learning, PMLR, Lille, France, 2015, pp. 362–370.
  • D. Zhou, P. Xu, and Q. Gu, Stochastic variance-reduced cubic regularized Newton methods, in Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, J. Dy and A. Krause, eds., PMLR, Stockholmsmässan, Stockholm, 2018, pp. 5990–5999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.