117
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Binary Organogels via Some Aminobenzimidazole/Benzothiazole Compounds and Fatty Acids with Different Alkyl Lengths: Self-Assembly and Drug Release Properties

, , , , &
Pages 38-48 | Received 04 May 2014, Accepted 31 Dec 2014, Published online: 14 Aug 2015

References

  • G.M. Newbloom, K.M. Weigandt, and D.C. Pozzo, Electrical, mechanical, and structural characterization of self-assembly in poly(3-hexylthiophene) organogel networks. Macromolecules 45, 3452–3462 (2012).
  • S. Bouguet-Bonnet, M. Yemloul, and D. Canet, New application of proton nuclear spin relaxation unraveling the intermolecular structural features of low-molecular-weight organogel fibers. J. Am. Chem. Soc. 134, 10621–10627 (2012).
  • H. Yu and Q. Huang, Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem. 60, 5373–5379 (2012).
  • S. O’Sullivan and D.W. M. Arrigan, Impact of a surfactant on the electroactivity of proteins at an aqueous–organogel microinterface array. Anal. Chem. 85, 1389–1394 (2013).
  • P.D. Wadhavane, R.E. Galian, M.A. Izquierdo, J. Aguilera-Sigalat, F. Galindo, L. Schmidt, M.I. Burguete, J. Pérez-Prieto, and S.V. Luis, Photoluminescence enhancement of CdSe quantum dots: a case of organogel–nanoparticle symbiosis. J. Am. Chem. Soc. 134, 20554–20563 (2012).
  • T. Jiao, Y. Wang, Q. Zhang, X. Yan, X. Zhao, J. Zhou, and F. Gao, Self-assembly and headgroup effect in nanostructured organogels via cationic amphiphile-graphene oxide composites. PLoS ONE 9, e101620 (2014).
  • M. Bielejewski and J. Tritt-Goc, Evidence of solvent−gelator interaction in sugar-based organogel studied by field-cycling NMR relaxometry. Langmuir 26, 17459–17464 (2010).
  • Y. Li, J. Liu, G. Du, H. Yan, H. Wang, H. Zhang, W. An, W. Zhao, T. Sun, F. Xin, L. Kong, Y. Li, A. Hao, and J. Hao, Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N,N-dimethylformamide. J. Phys. Chem. B 114, 10321–10326 (2010).
  • P. Anilkumar and M. Jayakannan, A novel supramolecular organogel nanotubular template approach for conducting nanomaterials. J. Phys. Chem. B 114, 728–736 (2010).
  • H. Takeno, A. Maehara, D. Yamaguchi, and S. Koizumi, A structural study of an organogel investigated by small-angle neutron scattering and synchrotron small-angle X-ray scattering. J. Phys. Chem. B 116, 7739–7745 (2012).
  • M. Yemloul, E. Steiner, A. Robert, S. Bouguet-Bonnet, F. Allix, B. Jamart-Greflgoire, and D. Canet, Solvent dynamical behavior in an organogel phase as studied by NMR relaxation and diffusion experiments. J. Phys. Chem. B 115, 2511–2517 (2011).
  • H. Guo, T. Jiao, X. Shen, Q. Zhang, A. Li, J. Zhou, and F. Gao, Binary organogels based on glutamic acid derivatives and different acids: Solvent effect and molecular skeletons on self-assembly and nanostructures. Colloid Surf. A-Physicochem. Eng. Asp. 447, 88–96 (2014).
  • F.S. Schoonbeek, J.H. van Esch, R. Hulst, R.M. Kellogg, and B.L. Feringa, Geminal bis-ureas as gelators for organic solvents: gelation properties and structural studies in solution and in the gel state. Chem.-Eur. J. 6, 2633–2643 (2000).
  • M. Moniruzzaman and P.R. Sundararajan, Low molecular weight organogels based on long-chain carbamates. Langmuir 21, 3802–3807 (2005).
  • Y. Marui, A. Kikuzawa, T. Kida, and M. Akashi, Unique organogel formation with macroporous materials constructed by the freeze−drying of aqueous cyclodextrin solutions. Langmuir 26, 11441–11445 (2010).
  • A.R. Hirst, D.K. Smith, and J.P. Harrington, Unique nanoscale morphologies underpinning organic gel-phase materials. Chem.-Eur. J. 11, 6552–6559 (2005).
  • P. Terech and R.G. Weiss, Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3160 (1997).
  • S. van der Laan, B.L. Feringa, R.M. Kellogg, and J. van Esch, Remarkable polymorphism in gels of new azobenzene bis-urea gelators. Langmuir 18, 7136–7140 (2002).
  • L.A. Estroff and A.D. Hamilton, Water gelation by small organic molecules. Chem. Rev. 104, 1201–1218 (2004).
  • B. Escuder, S. Marti, and J.F. Miravet, Organogel formation by coaggregation of adaptable amidocarbamates and their tetraamide analogues. Langmuir 21, 6776–6787 (2005).
  • N.M. Sangeetha and U. Maitra, Supramolecular gels: functions and uses. Chem. Soc. Rev. 34, 821–836 (2005).
  • T. Jiao, R. Wang, Q. Zhang, X. Yan, J. Zhou, and F. Gao, Nanostructures and substituent alkyl chains effect on assembly of organogels based on some glutamic acid diethyl ester imide derivatives. Curr. Nanosci. 9, 536–542 (2013).
  • P. Guo and M. Liu, Fabrication of chiral Langmuir-Schaefer films of achiral amphiphilic Schiff base derivatives through an interfacial organization. Langmuir 21, 3410–3412 (2005).
  • M. Liu, A. Kira, and H. Nakahara, Silver(I) ion induced monolayer formation of 2-substituted benzimidazoles at the air/water interface. Langmuir 13, 4807–4809 (1997).
  • M. Liu and J. Cai, Silver(I) ion induced reverse U-shape monolayers of poly(methylenebis(benzimidazoles)) at the air/water interface. Langmuir 16, 2899–2901 (2000).
  • T.F. Jiao, Y.J. Wang, F.Q. Gao, J.X. Zhou and F.M. Gao, Photoresponsive organogel and organized nanostructures of cholesterol imide derivatives with azobenzene substituent groups. Prog. Nat. Sci. 22, 64–70 (2012).
  • T.F. Jiao, F.Q. Gao, Y.J. Wang, J.X. Zhou, F.M. Gao, and X.Z. Luo, Supramolecular gel and nanostructures of bolaform and trigonal cholesteryl derivatives with different aromatic spacers. Curr. Nanosci. 8, 111–116 (2012).
  • M. de Loos, J.H. van Esch, R.M. Kellogg, and B.L. Feringa, C3-symmetric, amino acid based organogelators and thickeners: a systematic study of structure-property relations. Tetrahedron 63, 7285–7301 (2007).
  • P. Dastidar, Supramolecular gelling agents: can they be designed. Chem. Soc. Rev. 37, 2699–2715 (2008).
  • M. Suzuki and K. Hanabusa, L-Lysine-based low-molecular-weight gelators. Chem. Soc. Rev. 38, 967–975 (2009).
  • P. Mukhopadhyay, Y. Iwashita, M. Shirakawa, S. Kawano, N. Fujita, and S. Shinkai, Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix. Angew. Chem., Int. Ed. 45, 1592–1595 (2006).
  • T.F. Jiao, Q.Q. Huang, Q.R. Zhang, D.B. Xiao, J.X. Zhou, and F.M. Gao, Self-assembly of organogels via new luminol imide derivatives: diverse nanostructures and substituent chain effect. Nanoscale Res. Lett. 8, 278 (2013).
  • Y.J. Wang, L.M. Tang, and Y. Wang, New hydrogen-bonded supramolecular hydrogels and fibers derived from 1,2,4,5-benzenetetracarboxylic acid and 4-hydroxypyridine. Chem. Lett. 35, 548–549 (2006).
  • J. Wu, L. Tang, K. Chen, L. Yan, F. Li, and Y. Wang, Formation of supramolecular hydrogels with controlled microstructures and stability via molecular assembling in a two-component system. J. Colloid Interface Sci. 307, 280–287 (2007).
  • J.J. Van Gorp, J.A. J. M. Vekemans, and E.W. J. Meijer, C3-symmetrical supramolecular architectures:  fibers and organic gels from discotic trisamides and trisureas. J. Am. Chem. Soc. 124, 14759–14769 (2002).
  • T.F. Jiao, Y.J. Wang, Q.R. Zhang, J.X. Zhou, and F.M. Gao, Regulation of substituent groups on morphologies and self-assembly of organogels based on some azobenzene imide derivatives. Nanoscale Res. Lett. 8, 160 (2013).
  • M. Zinic, F. Vögtle, and F. Fages, Cholesterol-based gelators. Top. Curr. Chem. 256, 39–76 (2005).
  • T.F. Jiao, F.Q. Gao, X.H. Shen, Q.R. Zhang, X.F. Zhang, J.X. Zhou, and F.M. Gao, Self-assembly and nanostructures in organogels based on a bolaform cholesteryl imide compound with conjugated aromatic spacer. Materials 6, 5893–5906 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.