107
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Doping Effect of Cobalt Ions Incorporated into NaTaO3 Nanocrystalline

, , , &
Pages 145-153 | Received 01 Aug 2014, Accepted 31 Dec 2014, Published online: 17 Aug 2015

References

  • G.L. Huang, and Y.F. Zhu, Fluorescence quantum efficiency enhancement in CaWO4: Eu3+, Na+ nanocrystals by tridoping with F−ions. J. Phys. Chem. C., 111, 11952–119589 (2007).
  • S. Somekawa, Y. Kusumoto, M. Ikeda, B. Ahmmad, and Y. Horie, Fabrication of N-doped TiO2 thin films by laser ablation method: mechanism of N-doping and evaluation of the thin films. Catal. Comm., 9, 437–440 (2008).
  • J.H. Xu, W.L. Wang, J.X. Li, Y. Cao, H.X. Li, H.Y. He, and K.N. Fan, Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation. Catal. Comm., 9, 146–152 (2008).
  • X. Li, and J. Zang, Hydrothermal synthesis and characterization of lanthanum-doped NaTaO3 with high photocatalytic activity. Catal. Comm., 12, 1380–1383 (2011).
  • S. Usai, S. Obregón, A.I. Becerro, and G. Colon, Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. J. Phys. Chem. C., 117, 24479–24484 (2013).
  • C.Y. Yang, Z. Wang, T.Q. Lin, H. Yin, X.J. Lv, D.Y. Wan, T. Xu, C. Zeng, J.H. Lin, and F.Q. Huang, Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc., 135, 17831–17838 (2013).
  • Z.Q. Li, Y.B. Zeng, H.S. Qian, R. Long, and Y.J. Xiong, Facile synthesis of GdBO3 spindle assemblies and microdisks as versatile host matrices for lanthanide doping. Cryst. Eng. Comm., 14, 3959–3964 (2012).
  • G. Clavel, M.G. Willinger, D. Zitoun, and N. Pinna, Solvent dependent shape and magnetic properties of doped ZnO nanostructures. Adv. Funct. Mater., 17, 3159–3169 (2007).
  • M. Yang, X.L. Huang, and S.C. Yan, Improved hydrogen evolution activities under visible light irradiation over NaTaO3 codoped with lanthanum and chromium. Mater. Chem. Phys., 121, 506–510 (2010).
  • Y. Su, J. Lang, L. Li, K. Guan, C. Du, L. Peng, D. Han, and X. Wang, 2013. Unexpected catalytic performance in silent tantalum oxide through nitridation and defect chemistry. J. Am. Chem. Soc., 135, 11433–11436 (2013).
  • C. Zhou, G. Chen, and Y. Li, 2009. Photocatalytic activities of Sr2Ta2O7 nanosheets synthesized by a hydrothermal method. Int. J. Hydrogen Energy, 34, 2113–2112 (2009).
  • R. Shi, J. Lin, and Y. Wang, Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression. J. Phys. Chem. C., 114, 6472–6477 (2010).
  • I. Djerdj, D. Arc, Z. Jaglicic, and M. Niederberger, Nonaqueous synthesis of metal oxide nanoparticles: short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles. J. Solid State Chem., 181, 1571–1581 (2008).
  • Y. Matsumoto, M. Murakami, M. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Sci., 291, 854–856 (2001).
  • Y.F. Wanga, M.C. Hsieha, J.F. Leeb, and C.M. Yanga, Nonaqueous synthesis of CoOx/TiO2 nanocomposites showing high photocatalytic activity of hydrogen generation. Appl. Catal. B. Environ., 626, 142–143 (2013).
  • J.D. Bryan, S.A. Santangelo, S.C. Keveren, and D.R. Gamelin, Activation of high-TC ferromagnetism in Co2+: TiO2 and Cr3+: TiO2 nanorods and nanocrystals by grain boundary defects. J. Am. Chem. Soc., 127, 15568–15574 (2005).
  • J.D. Bryan, S.M. Heald, S.A. Chambers, and D.R. Gamelin, Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals. J. Am. Chem. Soc., 126, 11640–11647 (2004).
  • G. Clavel, M.G. Willinger, D. Zitoun, and N. Pinna, Solvent dependent shape and magnetic properties of doped ZnO nanostructure. Adv. Funct. Mater., 17, 3159–3169 (2007).
  • S. Cobo, J. Heidkamp, P.A. Jacques, J. Fize, V. Fourmond, and L. Guetaz, A janus cobalt-based catalytic material for electro-splitting of water. Nat Mater., 11, 802–807 (2012).
  • Z.P. Yan, H.T. Wu, A. Han, X.X. Yu, and P. Wu, Noble metal-free cobalt oxide (CoOx) nanoparticles loaded on titanium dioxide/cadmium sulfide composite for enhanced photocatalytic hydrogen production from water. Int. J. Hydrogen Energy 10. 1016/j.ijhydene. 2014.04.121
  • Y. Gao, Y.G. Su, Y. Meng, S.W. Wang, Q.Y. Jia, and X.J. Wang, Preparation and photocatalytic mechanism of vanadium doped NaTaO3 nanoparticles. Int. Ferroelectr., 127, 106–115 (2011).
  • X. Wang, H. Bai, Y. Meng, Y. Zhao, C. Tang, and Y. Gao, Synthesis and optical properties of Bi3+ doped NaTaO3 nano-size photocatalysts. J. Nanosci. Nanotech., 10, 1788–1794 (2010).
  • Y.G. Su, S.W. Wang, Y. Meng, H. Han, and X.J. Wang, Dual substitutions of single dopant Cr3+ in perovskite NaTaO3: Synthesis, structure, and photocatalytic performance. RSC Advances, 2, 12932–12939 (2012).
  • Y. Liu, Y. Su, H. Han, and X. Wang, Hydrothermal preparation of copper doped NaTaO3 nanoparticles and study on the photocatalytic mechanism. J. Nanosci. Nanotech., 13, 853–857 (2013).
  • G. Li, X. Yang, ChaiZ. Hailisi, and X. Wang, Tuning of NaTaO3 band structure through Mn2+ ions doping and the enhanced visible light response. J. Struct. Chem., 33, 771–778 (2013).
  • S. Yu, Y., X. Liu, and X. Wang, Preparation and light absorption mechanism of iron doped NaTaO3 nanoparticles. Chem. Indust. Eng. Progrss, 31, 1293–1297 (2012).
  • H.R. Liu, G.X. Shao, J. Liang, X.G. Liu, H.S. Jia, and B.S. Xu, Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis. J. Phys. Chem. C, 116, 16182–16190 (2012).
  • Y. Wang, 1991., Direct calculation of electron density in density-functional theory. Phys. Rev. Lett., 66, 1438–1441 (1991).
  • A.D. Becke, Density functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A., 38, 3098–3100 (1988).
  • D.E. Ellis, G.A. Benesh, and E. Byrom, Self-consistent embedded-cluster model for magnetic impurities: Fe, Co, and Ni in β-NiAl. Phys. Rev. B., 20, 11981207 (1979).
  • W.A. Heer, The physics of simple metal clusters: experimental aspects and simple model. Rev. Mod. Phys., 65, 611–676 (1993).
  • F. Tessier, P. Maillard, Y. Lee, C. Bleugat, and K. Domen, Zinc germanium oxynitride: influence of the preparation method on the photocatalytic properties for overall water splitting. J. Phys. Chem. C., 113, 8526–8531 (2009).
  • B.J. Kennedy, A.K. Prodjosantoso, and C.J. Howard, Powder neutron diffraction study of the high temperature phase transitions in NaTaO3. J. Phys. Condens. Matter., 11, 6319–6327 (1999).
  • Z.H. Li, G. Chena, and J.W. Liu, Electron structure and optical absorption properties of cubic and orthorhombic NaTaO3 by density functional theory. J. Solid State Comm., 143, 295–299 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.