312
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Perovskites: “Effective” Temperature and Coordination Dependence of 38 Ionic Radii

&
Pages 30-47 | Accepted 13 Jun 2015, Published online: 15 Dec 2015

References

  • F.S. Galasso, Structure, properties, and preparation of perovskite-type compounds London: Pergamon Press Inc., (1969).
  • S.C. Tidrow, Mapping comparison of Goldschmidt's tolerance factor with Perovskite structural conditions, Ferroelectrics, 4701) 13–27, (2014). DOI: 10.1080/00150193.2014.922372
  • A. Kumar, R. Jha, R.P. Tandon, V.P. S. Awana, Effect of boron substitution on the superconductivity of non-oxide perovskite MgCNi3, Solid State Commun 15217), 1678–1682 (2012).
  • M.H. Francombe, B. Lewis, Structural and electrical properties of silver niobate and silver tantalate, Acta Crystallogr 113), 175–178 (1958). DOI: 10.1107/S0365110×58000463
  • D.M. Trots, S.V. Myagkota, High-temperature structural evolution of caesium and rubidium triiodoplumbates, J Phys Chem Solids, 6910), 2520–2526 (2008). DOI: 10.1016/j.jpcs.2008.05.007
  • I.G. Wood, K.S. Knight, G.D. Price, J.A. Stuart, Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffraction, J Appl Crystallogr, 353), 291–295, (2002). DOI: 10.1107/S0021889802002273
  • A. Gibaud, S.M. Shapiro, J. Nouet, H. You, Phase diagram of KMn1-xCaxF3 (x < 0.5) determined by high-resolution x-ray scattering, Phys Rev B, 446), 2437–2443 (1991). DOI: 10.1103/PhysRevB.44.2437
  • G. Shirane, R. Newnham, R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3, Phys Rev, 963), 581–588 (1954). DOI: 10.1103/PhysRev.96.581
  • P. Vousden, A study of the unit-cell dimensions and symmetry of certain ferroelectric compounds of niobium and tantalum at room temperature, Acta Crystallogr 44 373–376 (1951). DOI: 10.1107/S0365110×5100115X
  • X.P. Wang, J.Y. Wang, Zhang, H. J., Yu, Y. G., J. Wu, W.L. Gao, R.I. Boughton, Thermal properties of cubic KTa1-xNbxO3 crystals, J Appl Phys 10332008). DOI: 10.1063/1.2838221
  • S.K. Sali, N.K. Kulkarni, K.D. Singh Mudher, Thermal and x-ray studies of mixed alkali urinates of Na–K–U–O system, J Alloy Compd 425, 28–33 (2006). DOI: 10.1016/j.jallcom.2006.01.059
  • C.N. W. Darlington, K.S. Knight, High-temperature phases of NaNbO3 and NaTaO3, Acta Crystallogr B551), 24–30 (1999). DOI: 10.1107/S010876819800963X
  • A. Yoshiasa, D. Sakamoto, H. Okudera, M. Ohkawa, K. Ota, Phase relations of N1-xKxMgF3 (0 ≤ x ≤ 1) perovskite-type solid solutions, Mater Res Bull 383), 421–427 (2003). DOI: 10.1016/S0025-5408(02)01059-0
  • B.J. Kennedy, A.K. Prodjosantoso, J. Howard, Powder neutron diffraction study of the high temperature phase transitions in NaTaO3, J Phys: Condens Matter 1133), 6319–6327 (1999). DOI: 10.1088/0953-8984/11/33/302
  • A. Bulou, C. Ridou, M. Rousseau, J. Nouet, A.W. Hewat, The temperature dependence of the structures of RbCaF3 and the determination of the low temperature phases, J Phys France 41187–96 (1980). DOI: 10.1051/jphys:0198000410108700
  • Knight, K. S., Structural phase transitions, oxygen vacancy ordering and protonation in doped BaCeO3, results from time-of-flight neutron powder diffraction investigations, Solid State Ionics 1451-4), 275–294 (2001). DOI: 10.1016/S0167-2738(01)00952-3
  • W.T. Fu, D. Visser, K.S. Knight, D.J. W. IJdo, High-resolution neutron powder diffraction study on the phase transitions in BaPbO3, J Solid State Chem, 1805), 1159–1565 (2007). DOI: 10.1016/j.jssc.2007.03.009
  • P.J. Saines, B.J. Kennedy, R.I. Smith, Structural phase transitions in BaPrO3, Mater Res Bull 44, 874–789 (2009). DOI: 10.1016/j.materresbull.2008.09.013
  • C.S. Knee, A. Magrasó, T. Norby, R.I. Smith, Structural transitions and conductivity of BaPrO3 and BaPr0.9Y0.1O3-δ, J Mater Chem 1920 3238–3247 (2009). DOI: 10.1039/B820976F
  • J. Cuervo Farfán, Rodríguez Arbey, F. Farjardo, E. Vera López, D.A. Landínez Téllez, J. Roa-Rojas, Structural properties, electric response and electronic feature of BaSnO3 perovskite, Physica B 40418), 2720–2722 (2009). DOI: 10.1016/j.physb.2009.06.126
  • T. Maekawa, K. Kurosaki, F. Yamanaka, Thermal and mechanical properties of polycrystalline BaSnO3, J Alloy Compd, 4161-2), 214–217 (2006). DOI: 10.1016/j.jallcom.2005.08.032
  • S. Upadhyay, High temperature impedance spectroscopy of barium stannate, BaSnO3, Bull Mater Sci, 366 1019–1036 (2013). DOI: 10.1007/S12034-013-0578-5
  • W.T. Fu, D. Visser, K.S. Knight, D.J. W. IJdo, Temperature-induced phase transitions in BaTbO3, J. Solid State Chem., 1774-5), 1667–1671 (2004). DOI: 10.1016/j.jssc.2003.12.022
  • H.F. Kay, Preparation and Properties of Crystals of Barium Titanate, BaTiO3, Acta Crystallogr 1, 229–237 (1948). DOI: 10.1107/S0365110×4800065X
  • HF. Kay, P. Vousden, Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties, Philos Mag 40309), 1019–1040 (1949)
  • X.R. Xing, J.X. Deng, Z.Q. Zhu, G.R. Liu, Solid solution Ba1-xPbxTiO3 and its thermal expansion, J Alloy Compd 3531-2 1–4 (2003). DOI: 10.1016/S0925-8388(02)01178-7
  • S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, S.-I. Kobayashi, K. Kurosaki, Thermophysical properties of BaZrO3 and BaCeO3, J Alloy Compd 3591-2), 109–113 (2003). DOI: 10.1016/S0925-8388(03)00214-7
  • S. Yamanaka, K. Kurosaki, T. Matsuda, M. Uno, Thermophysical properties of BaUO3, J Nucl Mater 2941-2), 99–102 (2001). DOI: 10.1016/S0022-3115(01)00474-3
  • B.J. Kennedy, C.J. Howard, B.C. Chakoumakos, Phase transitions in perovskite at elevated temperature – a powder neutron diffraction study, J Phys: Condens Matter 116 1479–1488 (1999). DOI: 10.1088/0953-8984/11/6/012
  • S.A. T. Redfern, High-temperature structural phase transitions in perovskite, CaTiO3, J Phys: Condens Matter 843), 8267–8275 (1996). DOI: 10.1088/0953-8984/8/43/019
  • B.J. Kennedy, G. Murphy, E. Reynolds, M. Avdeev, H.E. R. Brand, T. Kolodiazhnyi, J Phys: Condens Matter 2649 495901( 1-10) (2014). . DOI: 10.1088/0953-8984/26/49/495901
  • G. Shirane, S. Hoshino, On the phase transition in lead titanate, J Phys Soc Jpn 64 265–270 (1951). DOI: 10.1143/JPSJ.6.265
  • E. Sawaguchi, Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3, J Phys Soc Jpn 85), 615–629 (1953). DOI: 10.1143/JPSJ.8.615
  • B.J. Kennedy, C.J. Howard, B.C. Chakoumakos, High-temperature phase transitions in SrHfO3, Phys Rev B 605), 2972–2975 (1999). DOI: 10.1103/PhysRevB.60.2972
  • R.B. Macquart, B.J. Kennedy, M. Avdeev, Neutron diffraction study of phase transitions in perovskite-type molybdate SrMoO3, J. Solid State Chem, 1831), 249–254 (2010). DOI: 10.1016/j.jssc.2009.11.005
  • B.C. Chakoumakos, S.E. Nagler, S.T. Misture, H.M. Christen, High-temperature structural behavior of SrRuO3, Physica B 241-243, 358–360 (1998). DOI: 10.1016/S0921-4526(97)00587-5
  • B.J. Kennedy, B.A. Hunter, High-temperature phases of SrRuO3, Phys Rev B 582), 653–658 (1998) DOI: 10.1103/PhysRevB.58.653
  • G.J. Thorogood, M. Avdeev, M.L. Carter, B.J. Kennedy, J. Ting, K.S. Wallwork, Structural phase transitions and magnetic order in SrTcO3, Dalton Trans 4027), 7228–7233 (2011). DOI: 10.1039/c1dt10445d
  • X. Xing, J. Chen, J. Deng, G. Liu, Solid solution Pb1-xSrxTiO3 and its thermal expansion, J Alloy Compd 3601-2), 286–289 (2003). DOI: 10.1016/S0925-8388(03)00345-1
  • D. de Ligny, P. Richet High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites, Phys. Rev. B 536 3013–3022 (1996). DOI: 10.1103/PhysRevB.53.3013
  • C.J. Howard, K.S. Knight, B.J. Kennedy, E.H. Kisi, The structural phase transitions in strontium zirconate revisited, J Phys: Condens Matter 1245), L677–L683 (2000). DOI: 10.1088/0953-8984/12/45/101
  • W.T. Fu, D.J. W. Ijdo, “Unusual” phase transitions in CeAlO3 J Solid State Chem 1798), 27322738 (2006). DOI: 10.1016/j.jssc.2006.05.002
  • L. Vasylechko, A. Senyshyn, D. Trots, R. Niewa, W. Schnelle, M. Knapp, CeAlO3 and Ce1-xRxAlO3 (R = La, Nd) solid solutions: Crystal structure, thermal expansion and phase transitions, J Solid State Chem 1804), 12771290 (2007). DOI: 10.1016/j.jssc.2007.01.020
  • C.J. Howard, BJ. Kennedy, B.C. Chakoumakos, Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition, J. Phys: Condens Matter 124), 349365 (2000). DOI: 10.1088/0953-8984/12/4/301
  • B.C. Chakoumakos, D.G. Schlom, M. Urbanik, J. Luine, Thermal expansion of LaAlO3 and (La,Sr)(Al,Ta)O3, substrate materials for superconducting thin-film device applications, J Appl Phys 834), 1979–1982 (1998). DOI: 10.1063/1.366925
  • W.L. W. Ludekens, A.J. E. Welch, Reactions between metal oxides and fluorides: some new double-fluoride structures of type ABF3, Acta Crystallogr 56), 841 (1952). DOI: 10.1107/S0365110×52002240
  • Gingl, F., T Vogt., E. Akiba, K. Yvon, Cubic CsCaH3 and hexagonal RBMgH3: new examples of fluoride-related perovskite-type hydrides, J Alloy Compd 2821-2), 125–129 (1999). DOI: 10.1016/S0925-8388(98)00834-2
  • Y. Shi, Y. Guo, Y. Shirako, W. Yi, X. Wang, A.A. Belik, Y. Matsushita, H.L. Feng, Y. Tsujimoto, M. Arai, N. Wang, M. Akaogi, K. Yamaura, High-pressure synthesis of 5d cubic Perovskite BaOsO3 at 17 GPa: Ferromagnetic evolution over 3d to 5d series, J Am Chem Soc 13544), 1650716516 (2013). DOI: 10.1021/ja4074408
  • C.-Q. Jin, J.-S. Zhou, J.B. Goodenough, Q.Q. Liu, J.G. Zhao, L.X. Yang, Y. Yu, R.C. Yu, T. Katsura, A. Shatskiy, E. Ito, High-pressure synthesis of the cubic Perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates, P Natl Acad Sci USA 10520), 7115–7119 (2008). DOI: 10.1073/pnas.0710928105
  • W. Xiao, D. Tan, X. Xiong, J. Liu, J. Xu, H.-K. Mao, Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite, P Natl Acad Sci USA 10732), 14026–14029 (2010). DOI: 10.1073/pnas.1005307107
  • V.L. Miller, S.C. Tidrow, Perovskites: Temperature and coordination dependent ionic radii, Integr Ferroelectr 1481), 1–16 (2013). DOI: 10.1080/10584587.2013.851576
  • R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr A32(5), 751–767(1976).DOI: 10.1107/S0567739476001551
  • R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr B25(5), 925–946 (1969). DOI: 10.1107/S0567740869003220
  • W.L. Bragg, The arrangement of atoms in crystals, Phil Mag 40236), 169–189 (1920)
  • J.A. Wasastjerna, Comment phys-math, Helsingf 1, 1 (1923)
  • V.M. Goldschmidt, T.F.W. Barth, G. Lunde, W.H. Zachariasen, Skr norske Vidensk Akad 1 Mat-Nat Kl No.2 (1926)
  • W.L. Bragg, J. West, The structure of certain silicates, Proc Roy Soc A114768, 450–473 (1927)
  • L. Pauling, The sizes of ions and the structure of ionic crystals, J Amer Chem Soc 491), 765–790 (1927). DOI: 10.1021/ja012402a019
  • L. Pauling, The sizes of ions and their influence on the properties of salt-like compounds, Z Kristallogr 673/4), 377–404 (1928)
  • W.H. Zachariasen,, A set of empirical crystal radii for ions with inert gas configuration, Z Kristallogr 803/4), 137–153 (1931)
  • L.H. Arhens, The use of ionization potentials Part 1: Ionic radii of the elements, Geochim Cosmochim Acta 23), 155–159 (1952). DOI: 10.1016/0016-7037(52)90004-5
  • J.C. Slater, Atomic radii in crystals, J Chem Phys 4110), 3199 (1964). DOI: 10.1063/1.1725697
  • F.G. Fumi, M.P. Tosi, Ionic sizes and born repulsive parameters in the NaCl-type alkali halides – I: The Huggins-Mayer and Pauling forms, J Phys Chem Solids 251), 31–43 (1964). DOI: 10.1016/0022-3697(64)90159-3
  • N. Bohr, On the constitution of atoms and molecules, Part I, Philos Mag S-6, 26(151), 1–24 (1913). DOI: 10.1080/14786441308634955
  • I. Levin, T.G. Amos, S.M. Bell, L. Faber, T.A. Vanderah, R.S. Roth, B.H. Toby, Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3 – CaZrO3 system, J Solid State Chem 1752), 170–181 (2003). DOI: 10.1016/S0022-4596(03)00220-2
  • G. Shirane, R. Pepinsky, Phase transitions in antiferroelectric PbHfO3, Phys Rev 914), 812–815 (1953). DOI: 10.1103/PhysRev.91.812
  • A.R. Denton, N.W. Ashcroft, Vegard's Law Phys Rev A 436 3161–3164 (1991). DOI: 10.1103/PhysRevA.43.3161
  • L. Vegard, The constitution of the mixed crystals and the filling of space of the atoms, Z Phys 51), 17–26, (1921). DOI: 10.1007/BF01349680
  • L. Vegard, H. Dale, Tests on mixed crystals and alloys, Z Kristallogr, 67(1), 148–162, (1928). DOI: 10.1524/zkri.1928.67.1.148
  • L. Vegard, Z Kristallogr 67(2), 239–259 (1928). DOI: 10.1524/zkri.1928.67.1.239
  • M.A. Carpenter, Howard, C.J., K.S. Knight, Z. Zhang, Structural relationships and a phase diagram for (Ca,Sr)TiO3 perovskites J Phys: Condens Matter 1848), 10725–10749 (2006). DOI: 10.1088/0953-8984/18/48/002
  • S.K. Mishra, R. Ranjan, D Pandey., P. Ranson, R. Ouillon, J.-P. Pinan-Lucarre, P. Pruzan, Resolving the controversies about the ‘nearly cubic’ and other phases of Sr1-xCaxTiO3 (0 ≤ x ≤ 1): II. Comparison of phase transition behaviours for x = 0.40 and 0.43, J Phys: Condens Matter 18(6), 1899–1912 (2006). DOI: 10.1088/0953-8984/18/6/007
  • G. Shirane, S. Hoshino, X-ray study of phase transitions in PbZrO3 containing Ba or Sr, Acta Cryst 72), 203–210 (1954). DOI: 10.1107/S0365110×54000552

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.