370
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

The preparation of lead-free bismuth sodium titanate ceramics via the solid state combustion technique

, &
Pages 59-68 | Received 09 May 2016, Accepted 06 Oct 2016, Published online: 21 Mar 2017

References

  • E. Cross, Materials science-lead-free at last. Nature 432, 24–25 (2004).
  • J.V. Zvirgzds, P.P. Kapostis, and T.V. Kruzina, X-ray study of phase transitions in ferroelectric Na0.5Bi0.5TiO3. Ferroelectrics 40, 75–77 (1982).
  • M.S. Hagiyev, I.H. Ismaizade, and A.K. Abiyev, Pyroelectric properties of (Na1/2Bi1/2)TiO3 ceramics. Ferroelectrics 56, 215–217 (1984).
  • G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, and N.N. Krainik, New ferroelectrics of complex composition. Phys. Solid State. 2, 2651–2654 (1961).
  • K. Rolede, J. Suchanicz, and A. Kania, Time dependence of electric permittivity in Na0.5Bi0.5TiO3 single crystals. Ferroelectrics 89, 1–5 (1989).
  • J. East, and D.C. Sinclair, Characterization of (Na1/2Bi1/2)TiO3 Using electric modulus spectroscopy. Mater. Sci. Lett. 16, 422–425 (1997).
  • T. Takenaka, K.I. Maruyama, and K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–9 (1991).
  • C.W. Tai, S.H. Choy, and H.L.W. Chan, Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3 ceramics at different temperatures. J. Am. Ceram. Soc. 91, 3335–41 (2008).
  • W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, and A.J. Bell, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011).
  • V. Dorcet, G. Trolliard, and P. Boullay, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition. Chem. Mater. 20, 5061–73 (2008).
  • L.A. Schmitt, J. Kling, M. Hinterstein, M. Hoelzel, W. Jo, and H.J. Kleebe, Structural investigations on lead-free Bi1/2Na1/2TiO3-based piezo ceramics. J. Mater. Sci. 46, 4368–76. (2011).
  • Q. Xu, T. Li, H. Hao, S. Zhang, Z. Wang, M. Cao, Z. Yao, and H. Liu, Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Euro. Ceram. Soc. 35, 545–553 (2015).
  • B.V.B. Saradhi, K. Srinivas, G. Prasad, and T. Bhimasankaram, Impedance spectroscopic studies in ferroelectric (Na1/2Bi1/2)TiO3. Mater. Sci. Eng. B. 98, 10–16 (2003).
  • R. Zuo, S. Su, Y.Wu, J. Fu, M. Wang, and L. Li, Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bi0.5Na0.5)TiO3 ceramics. Mater. Chem. Phys. 110, 311–315 (2008).
  • Y.J. Ma, J. H. Cho, Y.H. Lee, and B.I. Kim, Hydrothermal synthesis of (Bi1/2Na1/2)TiO3 piezoelectric ceramics. Mater. Chem. Phys. 98, 5–8 (2006).
  • J. Hao, X. Wang, R. Chen, and L. Li, Synthesis of (Bi0.5Na0.5)TiO3 nanocrystalline powders by stearic acid gel method. Chem. Phys. 90, 282–285 (2005).
  • K.C. Patil, S.T. Aruna, and S. Ekambaram, Combustion synthesis. Curr. Opi. Solid St. M. 2, 156–165 (1997).
  • C. Kornphom, N. Vittayakorn, and T. Bongkarn, Lead-free piezoelectric ceramics based on (1-x)BNKLLT-xBCTZ binary solid solutions synthesized by the solid-state combustion technique. J. Mater. Sci. 51, 4142–4149 (2016).
  • P. Bhupaijit, C. Kornphom, N. Vittayakorn, and T. Bongkarn, Structural, microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics synthesized by the combustion technique. Ceram. Int. 41, 81–86 (2015).
  • C. Kornphom, N. Vittayakorn, and T. Bongkarn, Low firing temperatures and high ferroelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics synthesized by the combustion technique. Ferroelectrics 491, 44–53 (2016).
  • C. Kornphom, A. Laowanidwatana, and T. Bongkarn, The effects of sintering temperature and content of x on phase formation, microstructure and dielectric properties of (1-x)(Bi0.4871Na0.4871La0.0172TiO3)-x(BaZr0.05Ti0.95O3) ceramics prepared via the combustion technique. Ceram. Int. 39, 421–426 (2013).
  • S. Yotthuan, C. Kornphom, and T. Bongkarn, The effect of firing conditions on phase formation, microstructure and dielectric properties of BNKTNb-LSb ceramics prepared via the combustion technique. Phase Transitions, 88, 1035–1043 (2015).
  • P. Thawong, C. Kornphom, S. Chootin, and T. Bongkarn, Phase evolution and electrical properties of a new system of (1−x)[BNT–BKT–KNN]–xBCTZ lead-free piezoelectric ceramics synthesized by the solid-state combustion technique. Phase Transitions, 89, 232–241 (2016).
  • Powder diffraction files no. 36–0340: Interantional center for diffraction data. Newton Square: PA. (2003).
  • R. Sumang, and T. Bongkarn, The effect of calcination temperatures on the phase formation and microstructure of (Pb1-xSrx)TiO3 powders. Key Eng. Mater. 421, 243–246 (2010).
  • C.C. Hwang, T.Y. Wu, J. Wan, and J.S. Tsai, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powder. Mater. Sci. Eng. B 111, 49–56 (2004).
  • F. Zhou, Y. Xu, D. Li, C. He, M. Gao, and T. wang, (Na0.5Bi0.5)TiO3: Synthesis and x-ray powder diffraction data. Powder Diffraction 4, 223–224 (1989).
  • C. Kornphom, and T. Bongkarn, The Effect of Firing Temperatures on Phase Evolution, Microstructure, and Electrical Properties of Ba(Zr0.05Ti0.95)O3 Ceramics Prepared via Combustion Technique. Mater. Sci. (MEDŽIAGOTYRA) 20, 479–484 (2014).
  • M.N. Rahaman, Ceramics processing. Taylor & Francis, New York (2007).
  • N.W. Thomas, A new framework for understanding relaxor ferroelectrics. J. Phys. Chem. Solids. 51, 1419–1431 (1990).
  • T. Zeng, X.L. Dong, H. Chen, and Y.L. Wang, The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application. Mater. Sci. Eng. B. 131, 181–185 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.