72
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Enhancing piezoelectric of d33 coefficient of new (1−x)BNKLLT–xNKLNST lead-free ceramics synthesized by the solid state combustion technique

, &
Pages 121-130 | Received 16 May 2016, Accepted 09 Oct 2016, Published online: 21 Mar 2017

References

  • E. Cross, Lead-free at last. Nature 432 (4), 24–25 (2004).
  • G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, New ferroelectrics of complex composition. Phys. Solid. State. 2(11), 2651–2654 (1961).
  • K. Rolede, J. Suchanicz, and A. Kania, Time dependence of electric permittivity in Na0.5Bi0.5TiO3 single crystals. Ferroelectrics 89, 1–5 (1989).
  • P. Bhupaijit, C. Kornphom, N. Vittayakorn, and T. Bongkarn, Structural, microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics synthesized by the combustion technique. Ceram. Int. 41, 81–86 (2015).
  • C. Kornphom, N. Vittayakorn, and T. Bongkarn, Lead-free piezoelectric ceramics based on (1- x)BNKLLT-xBCTZ binary solid solutions synthesized by the solid-state combustion technique. J. Mater. Sci. 51, 4142–4149 (2016).
  • Y. M. Li, W. Chen, J. Zhou, Q. Xu, H. J. Sun, and M. S. Liao, Dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 ferroelectric ceramics. Ceram. Int. 31(1), 139–142 (2005).
  • Z. P. Yang, Y. T. Hou, H. Pan, and Y. F. Chang, Structure, microstructure and electrical properties of (1-x-y)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics. J. Alloys. Comp. 480, 246–253 (2009).
  • A. Herabut, and A. M. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(1−1.5x)LaxTiO3 ceramics. J. Am. Ceram. Soc. 80, 2954–2958 (1997).
  • C. R. Zhou, X. Y. Liu, W. Z. Li, C. L. Yuan, and G. H. Chen, Structure and electrical properties of Bi0.5(Na, K)0.5TiO3-BiGaO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 10, 93–98 (2010).
  • P. Baettig, C.L.F Schelle, R. C. LeSar, U. V. Waghmare, and N.C. A. Spaldin, Theoretical prediction of new high-performance lead-free piezoelectrics. Chem. Mater. 17, 1376–1380 (2005).
  • T. Takenaka, K. I. Maruyama, and K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991).
  • A. B. Kounga, S. T. Zhang, W. Jo, T. T. Granzow, and J. G. Rödel, Morphotropic phase boundary in lead-free piezoceramics. Appl. Phys. Lett. 92, 222902–9 (2008).
  • W. J. Ji, Y. B. Chen, S. T. Zhang, B. Yang, X. N. Zhao, and Q. J. Wang, Microstructure and electric properties of lead-free 0.8Bi1/2Na1/2TiO3-0.2Bi1/2K1/2TiO3 ceramics. Ceram. Int. 38, 1683–1686 (2012).
  • Q. Gou, J. G. Wu, A. G. Li, B. Wu, D. G. Xiao, and J. G. Zhu, Enhanced d33 value of Bi0.5Na0.5TiO3–(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics. J. Alloys. Comp. 521, 4–7 (2012).
  • S. Li, L. Chen, X. Ning, M. Guo, and M. Zhang, (1–x)Bi0.5Na0.5TiO3-xK0.5Na0.5NbO3 ceramics with low coercive field: Preparation from hydrothermally synthesized precursor powders. Ceram. Int. 41, 195–204 (2015).
  • H. Q. Wang, Y. J. Dai, Z. R. Shen, and X. W. Zhang, Phase transition behaviour and electrical properties of (1-x)Bi0.5Na0.5TiO3-x(Na0.53K0.44Li0.04)(Nb0.88Sb0.08Ta0.04)O3 lead-free ceramics. J. Euro. Ceram. Soc. 32, 1481–1484 (2012).
  • Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004).
  • N. M. Hagh, B. Jadidian, and A. Safari, Property-processing relationship in lead-free (K, Na, Li)NbO3-solid solution system. J. Electroceram. 18, 339–346 (2007).
  • C. Wattanawikkam, N. Vittayakorn, and T. Bongkarn, Low temperature fabrication of lead-free KNN-LS-BS ceramics via the combustion method. Ceram. Int. 39, 399–403 (2013).
  • C. Kornphom, N. Vittayakorn, and T. Bongkarn, Low firing temperatures and high ferroelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics synthesized by the combustion technique. Ferroelectrics 491, 44–53 (2016).
  • C. Kornphom, A. Laowanidwatan, and T. Bongkarn, The effects of sintering temperature and content of x on phase formation, microstructure and dielectric properties of (1–x)(Bi0.4871Na0.4871La0.0172TiO3)-x(BaZr0.05Ti0.95O3) ceramics prepared via the combustion technique. Ceram. Int. 39, 421–426 (2013).
  • S. Yotthuan, C. Kornphom, and T. Bongkarn, The effect of firing conditions on phase formation, microstructure and dielectric properties of BNKTNb-LSb ceramics prepared via the combustion technique. Phase Transitions 88, 1035–1043 (2015).
  • P. Thawong, C. Kornphom, S. Chootin, and T. Bongkarn, Phase evolution and electrical properties of a new system of (1−x)[BNT–BKT–KNN]–xBCTZ lead-free piezoelectric ceramics synthesized by the solid-state combustion technique. Phase Transitions 89, 232–241 (2016).
  • C. Kornphom, Combustion technique synthesis and characterization of new BNKLLT-BCTZ-NKLNST system ceramics. PhD dissertation: Naresuan University, Thailand; (2016).
  • Y. Bai, A. Matousek, P. Tofel, V. Bijalwan, B. Nan, H. Hughes, and T. W. Button, (Ba, Ca)(Zr, Ti)O3 lead-free piezoelectric ceramics-the critical role of processing on properties. J. Euro. Ceram. Soc. 35, 3445–3456 (2015).
  • W. Jo, S. Schaab, E. A. Sapper, L. Schmitt, H. J. Kleebe, A. J. Bell, and J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol%BaTiO3. J. Appl. Phys. 110, 074106 (2011).
  • R. Dittmer, W. Jo, J. Daniels, S. Schaab, and J. Rödel, Relaxor characteristics of morphotropic phase boundary (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 modified with Bi(Zn1/2Ti1/2)O3. J. Am. Ceram. Soc. 94, 4283–4290 (2011).
  • H. Pan, Y. T. Hou, X. L. Chao, L. L. Wei, and Z. P. Yang, Microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 11, 888–892 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.