199
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A new In2O3 and NiO co-loaded fly ash-based nanostructural geopolymer for photocatalytic H2 evolution

, , &
Pages 1-9 | Received 14 Sep 2016, Accepted 07 Mar 2017, Published online: 02 Nov 2017

References

  • G. C. H. Doudart de la Grée, M. V. A. Florea, A. Keulen, and H. J. H. Brouwers, Contaminated biomass fly ashes-Characterization and treatment optimization for reuse as building materials. Waste Manage. 49, 96–109 ( 2016).
  • M. Saxena, P. Asokan, S. Murali, B. Yadav, and S. Sangeeta, Pilot-scale demonstration study of the impact of fly ash on soil fertility and crop yield. Land. Contam. Reclamat. 18(4), 345–353 ( 2011).
  • L. C. Ram, and R. E. Masto, Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments. Eearth-Sci. Rev. 128(1), 52–74 ( 2014).
  • S. M. Shaheen, P. S. Hooda, and C. D. Tsadilas, Opportunities and challenges in the use of coal fly ash for soil improvements-A review. J. Environ. Manage. 145, 249–267 ( 2014).
  • A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, and M. Pires, Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J. Environ. Manage. 287, 69–77 ( 2015).
  • L. G. Zhang, and Z. M. Xu, An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash. J. Hazard. Maters. 312, 28–36 ( 2016).
  • Q. Zhou, C. J. Yan, and W. J. Luo, Polypyrrole coated secondary fly ash–iron composites: Novel floatable magnetic adsorbents for the removal of chromium (VI) from wastewater. Mater. Des. 92, 701–709 ( 2016).
  • S. W. Tang, X. H. Cai, Z. He, H. Y. Shao, Z. J. Li, and E. Chen, Hydration process of fly ash blended cement pastes by impedance measurement. Constr. Build. Mater. 113, 939–950 ( 2016).
  • M. Coo, and T. Pheeraphan, Effect of sand, fly ash and limestone powder on preplaced aggregate concrete mechanical properties and reinforced beam shear capacity. Constr. Build. Mater. 120, 581–592 ( 2016).
  • P. Shafigh, M. A. Nomeli, U. J. Alengaram, H. B. Mahmud, and M. Z. Jumaat, Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. J. Clean. Prod. 135, 148–157 ( 2016).
  • M. Komljenović, Z. Baščarević, and V. Bradić, Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J. Hazard. Maters. 181, 35–42 ( 2010).
  • M. Soutsos, A. P. Boyle, R. Vinai, A. Hadjierakleous, and S. J. Barnett, Factors influencing the compressive strength of fly ash based geopolymers. Constr. Build. Mater. 110, 355–368 ( 2016).
  • P. Garcés, L. G. Andión, E. Zornoza, M. Bonilla, and J. Payá, The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cement–modified fly ash mortars. Cem. Concr. Compos. 32, 204–210 ( 2010).
  • C. Monticelli, M. E. Natali, A. Balbo, C. Chiavari, F. Zanotto, S. Manzi, and M. C. Bignozzi, A study on the corrosion of reinforcing bars in alkali-activated fly ash mortars under wet and dry exposures to chloride solutions. Cem. Concr. Res. 87, 53–63 ( 2016).
  • P. Chindaprasirt, and W. Chalee, Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr. Build. Mater. 63, 303–310 ( 2014).
  • A. K. Hussein, Applications of nanotechnology in renewable energies-A comprehensive overview and understanding. Renew. Sustain. Energy Rev. 42, 460–476 ( 2015).
  • U. Sahaym, and M. G. Norton, Advances in the application of nanotechnology in enabling a hydrogen economy. J. Mater. Sci. 43, 5395–5429 ( 2008).
  • S. Onutai, S. Jiemsirilers, P. Thavorniti, and T. Kobayashi, Aluminium hydroxide waste based geopolymer composed of fly ash for sustainable cement materials. Constr. Build. Mater. 101, 298–308 ( 2015).
  • Y. J. Zhang, L. Kang, L. C. Liu, H. X. Si, and J. F. Zhang, Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance. Appl. Surf. Sci. 331, 399–406 ( 2015).
  • J. B. Mu, B. Chen, M. Y. Zhang, Z. C. Guo, P. Zhang, Z. Y. Zhang, Y. Y. Sun, C. L. Shao, and Y. C. Liu, Enhancement of the Visible-Light Photocatalytic Activity of In2O3–TiO2 Nanofiber Heteroarchitectures. Acs.Appl.mater.interfaces. 4, 424–430 ( 2012).
  • Y. J. Zhang, L. C. Liu, and D. P. Chen, Synthesis of CdS/bentonite nanocomposite powders for H2 production by photocatalytic decomposition of water. Powder Technol. 241, 7–11 ( 2013).
  • M. Tahir, B. Tahir, N. A. S. Amin, and A. Muhammad, Photocatalytic CO2 methanation over NiO/In2O3 promoted TiO2 nanocatalysts using H2O and/or H2 reductants. Energy Convers. Manage. 119, 368–378 ( 2016).
  • B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, NiO nanosheet/TiO2 nanorod-constructed p-n heterostructures for improved photocatalytic activity. Appl. Surf. Sci. 364, 322–331 ( 2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.