121
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of Cu2O nanoparticles with different structures by using block copolymers as capping agent

, , , , &
Pages 123-131 | Received 21 Sep 2016, Accepted 07 Mar 2017, Published online: 31 Oct 2017

References

  • C. H. B. Ng, W. Y. J. Fan, Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. J. Phys. Chem. B. 110, 20801 (2006).
  • C. M. McShane, W. P. Siripala, K.-S. Choi, Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells. J. Phys. Chem. Lett. 1, 2666 (2010).
  • S. Deng, V. Tjoa, H. M. Fan, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134, 4905 (2012).
  • B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O'Brien, Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett. 6, 2095 (2006).
  • D. Snoke, Coherent exciton waves. Science 273, 1351 (1996).
  • H. L. Xu, W. Z. Wang, W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B. 110, 13829 (2006).
  • C. H. Kuo, Y. C. Yang, S. Gwo, M. H. Huang, Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures. J. Am. Chem. Soc. 133, 1052 (2011).
  • K. Giannousi, G. Sarafidis, S. Mourdikoudis, A. Pantazaki, C. Dendrinou-Samara, Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast Saccharomyces cerevisiae and DNA interaction. Inorg. Chem. 53, 9657 (2014).
  • J. Ren, W. Wang, S. Sun, L. Zhang, L. Wang, J. Chang, Crystallography facet-dependent antibacterial activity: The case of Cu2O. Ind. Eng. Chem. Res. 50, 10366 (2011).
  • B.-X. Tang, F. Wang, J.-H. Li, Y.-X. Xie, M.-B. Zhang, Reusable Cu2O/PPh3/TBAB system for the cross-couplings of aryl halides and heteroaryl halides with terminal alkynes. J. Org. Chem. 72, 6294 (2007).
  • C.-S. Tan, S.-C. Hsu, W.-H. Ke, L.-J. Chen, M. H. Huang, Facet-dependent electrical conductivity properties of Cu2O Crystals. Nano Lett. 15, 2155 (2015).
  • L. Zhang, H. Wang, Cuprous oxide nanoshells with geometrically tunable optical properties. Acs. Nano. 5, 3257 (2011).
  • H. Li, R. Liu, R. Zhao, Y. Zheng, W. Chen, Z. Xu, Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids. Cryst. Growth Des. 6, 2795 (2006).
  • J. T. Zhang, J. F. Liu, Q. Peng, X. Wang, Y. D. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867 (2006).
  • M. L. Pang, H. C. Zeng, Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives. Langmuir. 26, 5963 (2010).
  • M. Yin, C. K. Wu, Y. B. Lou, C. Burda, J. T. Koberstein, Y. M. Zhu, S. O'Brien, Copper oxide nanocrystals. J. Am. Chem. Soc. 127, 9506 (2005).
  • Y. W. Tan, X. Y. Xue, Q. Peng, H. Zhao, T. H. Wang, Y. D. Li, Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett. 7, 3723 (2007).
  • W. Z. Wang, G. H. Wang, X. S. Wang, Y. J. Zhan, Y. K. Liu, C. L. Zheng, Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv. Mater. 14, 67 (2002).
  • M. J. Siegfried, K.-S. Choi, Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals. J. Am. Chem. Soc. 128, 10356 (2006).
  • C.-H. Kuo, M. H. Huang, Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C. 112, 18355 (2008).
  • L. F. Gou, C. J. Murphy, Solution-phase synthesis of Cu2O nanocubes. Nano Lett. 3, 231 (2003).
  • C. H. Kuo, C. H. Chen, M. H. Huang, Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 17, 3773 (2007).
  • M. J. Siegfried, K.-S. Choi, Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. 16, 1743 (2004).
  • D. F. Zhang, H. Zhang, L. Guo, K. Zheng, X. D. Han, Z. Zhang, Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 19, 5220 (2009).
  • C. H. Kuo, M. H. Huang, Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today. 5, 106 (2010).
  • C.-H. Kuo, M. H. Huang, Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching. J. Am. Chem. Soc. 130, 12815 (2008)
  • Y. B. Cao, J. M. Fan, L. Y. Bai, F. L. Yuan, Y. F. Chen, Synthesis of hierarchical Co micro/nanocomposites with hexagonal plate and polyhedron shapes and their catalytic activities in glyce. Cryst. Growth Des. 10, 232 (2010).
  • H. L. Xu, W. Z. Wang, Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 46, 1489 (2007).
  • Y. Chang, J. J. Teo, H. C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21, 1074 (2005).
  • J. J. Teo, Y. Chang, H. C. Zeng, Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 22, 7369 (2006).
  • C. H. Lu, L. M. Qi, J. H. Yang, X. Y. Wang, D. Y. Zhang, J. L. Xie, J. M. Ma, One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route. Adv. Mater. 17, 2562 (2005).
  • J. N. Gao, Q. S. Li, H. B. Zhao, L. S. Li, C. L. Liu, Q. H. Gong, L. M. Qi, One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chem. Mater. 20, 6263 (2008).
  • H. T. Zhu, J. X. Wang, G. Y. Xu. Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus. Cryst. Growth Des. 9, 633 (2009).
  • L. I. Hung, C. K. Tsung, W. Y. Huang, P. D. Yang, Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 22, 1910 (2010).
  • S. Yuan, X. Li, X. Zhang, Y. Jia, Fabrication of Au-Ag bimetallic nanostructures through the galvanic replacement reaction of block copolymer-stabilized Ag nanoparticles with HAuCl4. Sci. Adv. Mater. 7, 918 (2015).
  • X. Fu, H. Yang, X. Zhang, X. Li, L. Xu, Y. Jia, One-step method for preparation of pH-responsive gold nanoparticles with block copolymer shell structures by UV irradiation. Polym. Bull. 67, 1059 (2011).
  • X. Fu, L. Song, J. Liu, X. Li, X. Zhang, Y. Jia, One-step approach for the preparation of organic-inorganic Janus-like particles by alkalization of polystyrene-block-poly(2-vinylpyridine)/FeCl3 complex micelles. Macromol. Chem. Phys. 213, 1663 (2012).
  • G. Milazzo, S. Caroli, Eds. Tables of Standard Electrode Potentials; John Wiley & Sons: New York. 1978.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.