136
Views
4
CrossRef citations to date
0
Altmetric
Articles

Preparation and photocatalytic performance of Cu-doped CeO2 by citrate combustion method

, , , &
Pages 169-179 | Received 28 Sep 2017, Accepted 20 Feb 2018, Published online: 09 Jan 2019

References

  • J. Kaspar, P. Fornasiero, and M. Graziani, Use of CeO2-based oxides in the three-way catalysis, Catal.Today. 50, 285–298 (1999).
  • L. Heejin, K. J. Huy, K. W. Hyun et al., Conversion of acetic acid from the catalytic pyrolysis of xylan over CeO2, J. Nanosci. Nanotechno. 16 (5), 4480–4483 (2016).
  • V. D. Kosynkin, A. A. Arzgatkina, E. N. Ivanov et al., The study of process production of polishing powder based on cerium dioxide, J. Alloy. Compd. 303–304, 421–425 (2000).
  • D. R. Ou, T. Mori, H. Togasak et al., Microstructural and metal-support interactions of the Pt-CeO2/C catalysts for direct methanol fuel cell application, Langmuir 27 (7), 3859–3866 (2011).
  • L. Truffault, M. T. Ta, T. Devers et al., Application of nanostructured Ca doped CeO2 for ultraviolet filtration, Mater. Res. Bull. 45, 527–535 (2010).
  • Z. Liu, S. Guo, C. Hong et al., Synthesis and photocatalytic properties of CeO2 nanocubes, J. Mater. Sci: Mater. Electron. 27, 2146–2150 (2016).
  • L. Yue and X. M. Zhang, Structural characterization and photocatalytic behaviors of doped CeO2 nanoparticles, J. Alloy. Compd. 475 (1–2), 702–705 (2009).
  • M. M. Khan, S. A. Ansari, D. Pradhan et al., Defect-induced band gap narrowed CeO2 nanostructures for visible light activities, Ind. Eng. Chem. Res. 53, 9754–9763 (2014).
  • L. Jiang, M. Yao, B. Liu et al., Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties, J. Phys. Chem. C. 116 (21), 11741–11745 (2012).
  • Q. Wang, S. Yu, Z. Tan et al., Synthesis of monodisperse Bi2O3-modified CeO2 nanospheres with excellent photocatalytic activity under visible light, Cryst. Eng. Comm. 17, 671–677 (2015).
  • B. Li, T. Gu, T. Ming et al., (Gold core) @ (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light, ACS Nano. 8, 8152–8162 (2014).
  • D. Channei, B. Inceesungvorn, N. Wetchakun et al., Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis, Ceram. Int. 39, 3129–3134 (2013).
  • D. Channei, B. Inceesungvorn, N. Wetchakun et al., Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation, Sci. Rep-UK. 4, 5757 (2014).
  • A. A. Ansari, J. P. Labis, M. Alam et al., Synthesis, structural and optical properties of Mn-doped ceria nanoparticles: a promising catalytic material, Acta. Metall. Sin. (Engl. Lett.). 29 (3), 265–273 (2016).
  • Q. Tan, C. Du, Y. Sun et al., Nickel-doped ceria nanoparticles for promoting catalytic activity of Pt/C for ethanol electrooxidation, J. Power. Sources. 263, 310–314 (2014).
  • M. Balestrieri, S. Colis, M. Gallart et al., Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction, J. Mater. Chem. C. 3, 7014–7021 (2015).
  • A. D. Liyanage, S. D. Perera, K. Tan et al., Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods, ACS Catal. 4, 577–584 (2014).
  • P. A. Primus, T. Ritschel, P. Y. Sigueenza et al., High-resolution spectroscopy of europium-doped ceria as a tool to correlate structure and catalytic activity, J. Phys. Chem. C. 118 (40), 23349–23360 (2014).
  • S. S. P. Sultana, D. H. V. Kishore, M. Kuniyil et al., Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: synthesis and their characterization, Arab. J. Chem. 8, 766–770 (2015).
  • M. Zabilskiy, P. Djinović, E. Tchernychova et al., Nanoshaped CuO/CeO2 materials: effect of the exposed ceria surfaces on catalytic activity in N2O decomposition reaction, ACS Catal. 5 (9), 5357–5365 (2015).
  • 21. P. Sudarsanam, B. Hillary, B. Mallesham et al., Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials, Langmuir 32 (9), 2208–2215 (2016).
  • F. Wang, R. Büchel, A. Savitsky et al., In situ EPR study of the redox properties of CuO–CeO2 catalysts for preferential CO oxidation (PROX), ACS Catal. 6 (6), 3520–3530 (2016).
  • W. W. Wang, W. Z. Yu, P. P. Du et al., Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: importance of metal-support interaction, ACS Catal. 7 (2), 1313–1329 (2017).
  • F. Meng and L. Wang, Hydrothermal synthesis of monocrystalline CeO2 nanopoles and their room temperature ferromagnetism, Mater. Lett. 100 (2), 86–88 (2013).
  • S. Phokha, S. Pinitsoontorn, and S. Maensiri, Structure and magnetic properties of monodisperse Fe3+-doped CeO2 nanospheres, Nano-Micro. Lett. 5 (4), 223–233 (2013).
  • M. Dastpak, M. Farahmandjou, and T. P. Firoozabadi, Synthesis and preparation of magnetic Fe-doped CeO2 nanoparticles prepared by simple sol-gel method, J. Supercond. Nov. Magn. 29, 2925–2929 (2016).
  • Y. Luo, R. Chen, W. Peng et al., Inverse CeO2-Fe2O3 catalyst for superior low-temperature CO conversion efficiency, Appl. Surf. Sci. 416, 911–917 (2017).
  • L. Zou, X. Shen, Q. Wang et al., Improvement of catalytic activity and mechanistic analysis of transition metal ion doped nano CeO2 by aqueous Rhodamine B degradation, J. Mater. Res. 30 (18), 2763–2771 (2015).
  • R. Ma, M. J. Islam, D. A. Reddy et al., Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern, Ceram. Int. 42, 18495–18502 (2016).
  • M. O. Mazan, A. Craievich, E. B. Halac et al., Structural and morphological properties of Ce(1-x)FexO2-δ synthesized by citrate route, Ceram. Int. 41, 13721–13730 (2015).
  • P. Bera, A. Gayen, M. S. Hegde et al., Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation, J. Phys. Chem. B. 107, 6122–6130 (2003).
  • M. Meng, Y. Liu, Z. Sun et al., Synthesis of highly-dispersed CuO-CeO2 catalyst through a chemisorption-hydrolysis route for CO preferential oxidation in H2-rich stream, Int. J. Hydrogen. Energy. 37, 14133–14142 (2012).
  • M. Fu, X. Yue, D. Ye et al., Soot oxidation via CuO doped CeO2 catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis, Catal. Today. 153, 125–132 (2010).
  • S. Zeng, W. Zhang, M. Sliwa et al., Comparative study of CeO2/CuO and CuO/CeO2 catalysts on catalytic performance for preferential CO oxidation, Int. J. Hydrogen. Energy. 38, 3597–3605 (2013).
  • T. Huang, J. Wu, Z. Zhao et al., Synthesis and photocatalytic performance of CuO-CeO2/graphene oxide, Mater. Lett. 185, 503–506 (2016).
  • J. G. Speight, Lang's handbook of chemistry. Sixteenth Edition, (Mcgraw-Hill Press, Laramie, Wyoming, USA. 1.152 2005).
  • T. Masui, K. Fujiwara, K. Machida et al., Characterization of cerium(IV) oxide ultrafine particles prepared using reversed micelles, Chem. Mater. 9, 2197–2204 (1997).
  • L. Yin, Y. Wang, G. Pang et al., Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect, J. Coll. Inter. Sci. 246, 78–84 (2002).
  • L. Yue and X. M. Zhang, Structural characterization and photocatalytic behaviors of doped CeO2 nanoparticles, J. Alloys. Comp. 475, 702–705 (2009).
  • L. H. Reddy, G. K. Reddy, D. Devaiah et al., A rapid microwave-assisted solution combustion synthesis of CuO promoted CeO2-MxOy (M = Zr, La, Pr and Sm) catalysts for CO oxidation, Appl. Catal. A-Gen. 445–446, 297–305 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.