142
Views
1
CrossRef citations to date
0
Altmetric
Articles

Geometrical and electronic properties of C-doped graphyne-like BN sheets

, , , , , , & show all
Pages 180-188 | Received 09 Oct 2017, Accepted 20 Feb 2018, Published online: 09 Jan 2019

References

  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666–669 (2004).
  • G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(19), 3256–3258 (2010).
  • D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, Boron nitride nanotubes and nanosheets, ACS nano 4(6), 2979–2993 (2010).
  • J. Bao, K. Jeppson, M. Edwards, Y. Fu, L. Ye, X. Lu, and J. Liu, Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing, Electron. Mater. Lett. 12(1), 1–16 (2016).
  • K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett. 12(1), 161–166 (2012).
  • Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: from theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572–2586 (2014).
  • W. Wu, W. Guo, and X. C. Zeng, Intrinsic electronic and transport properties of graphyne sheets and nanoribbons, Nanoscale 5(19), 9264–9276 (2013).
  • H. J. Hwang, J. Koo, M. Park, N. Park, Y. Kwon, and H. Lee, Multilayer Graphynes for Lithium Ion Battery Anode, J. Phys. Chem. C 117(14), 6919–6923 (2013).
  • H. J. Hwang, Y. Kwon, and H. Lee, Thermodynamically Stable Calcium-Decorated Graphyne as a Hydrogen Storage Medium, J. Phys. Chem. C 116(38), 20220–20224 (2012).
  • J. L. Kou, X. Y. Zhou, H. J. Lu, F. M. Wu, and J. T. Fan, Graphyne as the membrane for water desalination, Nanoscale 6(3), 1865–1870 (2014).
  • J. Kang, J. Li, F. Wu, S.-S. Li, and J.-B. Xia, Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet, J. Phys. Chem. C 115(42), 20466–20470 (2011).
  • J. Zhou, Q. Wang, Q. Sun, and P. Jena, Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine, Phys. Rev. B 81(8), 085442 (2010).
  • Y. L. Wang, Y. Ding, and J. Ni, Fluorination-induced half-metallicity in zigzag boron nitride nanoribbons: First-principles calculations, Phys. Rev. B 81(19), 2498–2502 (2010).
  • Y. Zhao, X. Wu, J. Yang, and X. C. Zeng, Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes, Phys. Chem. Chem. Phys. 13(24), 11766–11772 (2011).
  • S. Tang, J. Yu, and L. Liu, Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine, Phys. Chem. Chem. Phys. 15(14), 5067–5077 (2013).
  • S. Tang, and Z. Cao, Structural and electronic properties of the fully hydrogenated boron nitride sheets and nanoribbons: Insight from first-principles calculations, Chem. Phys. Lett. 488(1-3), 67–72 (2010).
  • Z. Zhang, and W. Guo, Controlling the Functionalizations of Hexagonal Boron Nitride Structures by Carrier Doping, J. Phys. Chem. Lett. 2(17), 2168–2173 (2011).
  • Q. Lin, X. Zou, G. Zhou, R. Liu, J. Wu, J. Li, and W. Duan, Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study, Phys. Chem. Chem. Phys. 13(26), 12225–12230 (2011).
  • Y.-j. Liu, B. Gao, D. Xu, H.-m. Wang, and J.-x. Zhao, Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: Electronic, magnetic properties, and reactivity, Phys. Lett. A 378(40), 2989–2994 (2014).
  • J. W. Feng, Y. J. Liu, and J. X. Zhao, Theoretical prediction of the mechanisms for defect healing or oxygen doping in a hexagonal boron nitride (h-BN) sheet with nitrogen vacancies by NO2 molecules, J. Mol. Model. 20(6), 1–7 (2014).
  • Z. Zhang, Z. Geng, D. Cai, T. Pan, Y. Chen, L. Dong, and T. Zhou, Structure, electronic and magnetic properties of hexagonal boron nitride sheets doped by 5d transition metal atoms: First-principles calculations and molecular orbital analysis, Physica E 65, 24–29 (2015).
  • R. E. Mapasha, E. Igumbor, and N. Chetty, A hybrid density functional study of silicon and phosphorus doped hexagonal boron nitride monolayer, J. Phys. 759(1), 012042 (2016).
  • S. Lin, X. Ye, R. S. Johnson, and H. Guo, First-Principles Investigations of Metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) Doped Hexagonal Boron Nitride Nanosheets: Stability and Catalysis of CO Oxidation, J. Phys. Chem. C 117(33), 17319–17326 (2013).
  • F. Oba, A. Togo, I. Tanaka, K. Watanabe, and T. Taniguchi, Doping of hexagonal boron nitride via intercalation: A theoretical prediction, Phys. Rev. B 81(7), 1020–1031 (2010).
  • H. Park, A. Wadehra, J. W. Wilkins, and A. H. Castro Neto, Magnetic states and optical properties of single-layer carbon-doped hexagonal boron nitride, Appl. Phys. Lett. 100(25), 253115 (2012).
  • H. Kökten, and Ş. Erkoç, Energetics and structural properties of carbon and oxygen doped hexagonal boron nitride sheets, Physica E 44(1), 215–217 (2011).
  • R. D. Gonçalves, S. Azevedo, F. Moraes, and M. Machado, Energetic stability of boron nitride nanostructures doped with one carbon atom, Int. J Quantum. Chem. 110(9), 1778–1783 (2010).
  • X. Wei, M. S. Wang, Y. Bando, and D. Golberg, Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes, ACS nano 5(4), 2916–2922 (2011).
  • V. O. Özçelik, and S. Ciraci, Size Dependence in the Stabilities and Electronic Properties of α-Graphyne and Its Boron Nitride Analogue, J. Phys. Chem. C 117(5), 2175–2182 (2013).
  • Y. N. Zhang, J. N. Yun, K. Y. Wang, X. H. Chen, Z. Yang, Z. Y. Zhang, J. F. Yan, and W. Zhao, First-principle study of graphyne-like BN sheet: Electronic structure and optical properties, Comput. Mater. Sci. 136, 12–19 (2017).
  • M. Asadpour, S. Malakpour, M. Faghihnasiri, and B. Taghipour, Mechanical properties of two-dimensional graphyne sheet, analogous system of BN sheet and graphyne-like BN sheet, Solid State Commun. 212, 46–52 (2015).
  • N. B. Singh, B. Bhattacharya, and U. Sarkar, A first principle study of pristine and BN-doped graphyne family, Struct. Chem. 25(6), 1695–1710 (2014).
  • B. Bhattacharya, N. B. Singh, and U. Sarkar, Pristine and BN doped graphyne derivatives for UV light protection, Int. J. Quantum Chem. 115(13), 820–829 (2015).
  • M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys-Condens Mat. 14(11), 2717–2744 (2002).
  • S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787–1799 (2006).
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(11), 7892–7895 (1990).
  • K. B. John P. Perdew, Matthias Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18), 3865–3868 (1996).
  • P. J. Monkhorst HJ, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188–5192 (1976).
  • C. G. Van de Walle, and J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides, J.Appl. Phys. 95(8), 3851–3879 (2004).
  • M. Jafari, M. Asadpour, N. Ashtari Majelan, and M. Faghihnasiri, Effect of boron and nitrogen doping on electro-optical properties of armchair and zigzag graphyne nanoribbons, Comput. Mater. Sci. 82(82), 391–398 (2014).
  • J. Yun, Z. Zhang, J. Yan, and W. Zhao, First-principles study of B doping effect on the electronic structure and magnetic properties of γ -graphyne, Thin Solid Films 589, 662–668 (2015).
  • S. Behzad, Ab initio study of electronic properties and dielectric response of graphyne-like boron nitride sheet, Opt. Quant. Electron. 48(8), 1–10 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.