91
Views
0
CrossRef citations to date
0
Altmetric
Articles

Modification in the properties of SnO2 and TiO2 nanocomposite thin films by low energy ion irradiation

, , , , , , & show all
Pages 88-99 | Received 10 Dec 2017, Accepted 16 Jul 2018, Published online: 27 Mar 2019

References

  • W. Jin et al., Synthesis of hierarchical SnO2 nanoflowers with enhanced acetic acid gas sensing properties, Appl. Surf. Sci. 353, 71 (2015).
  • N. Barsan, M. Schweizer-Berberich, and W. Göpel. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius' J. Anal. Chem. 365 (4), 287 (1999).
  • C. Wang et al., Metal oxide gas sensors: sensitivity and influencing factors. Sensors. 10 (3), 2088 (2010).
  • B. Wang et al., Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C. 112 (17), 6643 (2008).
  • J. Nisar et al., TiO2-based gas sensor: a possible application to SO2. ACS Appl. Mater. Interfaces. 5 (17), 8516 (2013).
  • C. Garzella et al., TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sensors Actuators B: Chem. 68 (1–3), 189 (2000).
  • J. Yu, X. Zhao, and Q. Zhao. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films. 379 (1–2), 7 (2000).
  • J. Yu, X. Zhao, and Q. Zhao. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Mater. Chem. Phys. 69 (1–3), 25 (2001).
  • P. Manjula, R. Boppella, and S. V. Manorama. A facile and green approach for the controlled synthesis of porous SnO2 nanospheres: application as an efficient photocatalyst and an excellent gas sensing material. ACS Appl. Mater. Inter. 4, 6252 (2012).
  • Y. Liu et al., Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation.smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Inter. 6 (3), 2174 (2014).
  • R. Daghrir, P. Drogui, D. Robert. Modified TiO2 for environmental photocatalytic applications: A Review. Ind. Eng. Chem. Res. 52 (10), 3581 (2013).
  • H. Wang, A. L. Rogach. Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem. Mater. 26 (1), 123 (2014).
  • E. Fortunato et al., Transparent conducting oxides for photovoltaics. MRS Bull. 32 (3), 242 (2007).
  • A. N. Green et al., Charge transport versus recombination in dye-sensitized solar cells employing nanocrystallineTiO2 and SnO2 films. J. Phys. Chem. B. 109 (25), 12525 (2005).
  • B. G. Lewis, D. C. Paine. Applications and processing of transparent conducting oxides. Mrs Bull. 25 (8), 22 (2000).
  • S. Dutta et al., Self-assembled TiO2 nanospheres by using a biopolymer as a template and its optoelectronic application. ACS Appl. Mater. Interfaces. 4 (3), 1560 (2012).
  • R. Presley et al., Tin oxide transparent thin-film transistors. J. Phys. D: Appl. Phys. 37 (20), 2810 (2004).
  • B. Bob et al., Nanoscale dispersions of gelled SnO2: material properties and device applications. Chem. Mater. 25 (23), 4725 (2013).
  • K. Vinodgopal, P. V. Kamat. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. Technol. 29 (3), 841 (1995).
  • Z. Liu et al., An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 7 (4), 1081 (2007).
  • A. Beltrán et al., Density functional theory study on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. J. Phys. Chem. A 112 (38), 8943 (2008).
  • B. Yadav, N. Verma, and S. Singh. Nanocrystalline SnO2–TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor. Optics & Laser Technol. 44 (6), 1681 (2012).
  • X. Hou et al., SnO2@ TiO2 heterojunction nanostructures for lithium‐ion batteries and self‐powered uvphotodetectors with improved performances. Chemelectrochem. 1 (1), 108 (2014).
  • M. Radecka, K. Zakrzewska, and M. Rękas. SnO2–TiO2 solid solutions for gas sensors. Sensors and Actuators B: Chem. 47 (1–3), 194 (1998).
  • S. Chai et al., Novel sieve-like SnO2/TiO2 nanotubes with integrated photoelectrocatalysis: fabrication and application for efficient toxicity elimination of nitrophenol wastewater. J. Phys. Chem. C. 115 (37), 18261 (2011).
  • T. Mohanty, P. Satyam, and D. Kanjilal. Synthesis of nanocrystalline tin oxide thin film by swift heavy ion irradiation. J. Nanosci. Nanotechnol. 6 (8), 2554 (2006).
  • M. Toulemonde, C. Dufour, and E. Paumier. Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B. 46 (22), 14362 (1992).
  • M. Caron et al., Theoretical and experimental study of electronic temperatures in heavy ion tracks from Auger electron spectra and thermal spike calculations. Nucl. Instrum. Methods Phys. Res B. 245 (1), 36 (2006).
  • A. Benyagoub. Phase transformations in oxides induced by swift heavy ions. Nucl. Instrum. Methods Phys. Res B. 245 (1), 225 (2006).
  • W. Bolse. Interface modification by swift heavy ions. Radiation Measur. 36 (1–6), 597 (2003).
  • W. Bolse, B. Schattat. Atomic mixing in thin film systems by swift heavy ions. Nucl. Instrum. Methods Phys. Res B. 190 (1–4), 173 (2002).
  • W. Bolse, B. Schattat. Atomic transport in hot ion tracks. Nucl. Instrum. Methods Phys. Res B. 209, 32 (2003).
  • M. Pavlovič, I. Strašík. Supporting routines for the SRIM code. Nucl. Instrum. Methods Phys. Res B. 257 (1–2), 601 (2007).
  • R. E. Stoller et al., On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res B. 310, 75 (2013).
  • J. F. Ziegler. SRIM-2003. Nucl. Instrum. Methods Phys. Res B. 219–220, 1027 (2004).
  • J. F. Ziegler, M. D. Ziegler, and J. P. Biersack. The stopping of ions in compounds. Nucl. Instrum. Methods Phys. Res B. 268 (11–12), 1818 (2010).
  • M. K. Jaiswal, D. Kanjilal, and R. Kumar. Structural and optical studies of 100MeV Au irradiated thin films of tin oxide. Nucl. Instrum. Methods Phys. Res B. 314, 170 (2013).
  • D. Kanjilal et al., An analysis of 100MeV F8+ ion and 50MeV Li3+ ion irradiation effects on silicon NPN rf power transistors. Nucl. Instrum. Methods Phys. Res. A. 620 (2–3), 450 (2010).
  • K. Abhirami et al., Effect of SHI irradiation on the morphology of SnO2 thin film prepared by reactive thermal evaporation. Vacuum. 90, 39 (2013).
  • S.-H. Hong, and S. Åsbrink. The structure of g-Ti3O5 at 297 K. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 38 (10), 2570 (1982).
  • K. Zakrzewska et al., Reactively sputtered Ti02-x thin films with plasma-emission-controlled departure from stoichiometry. Thin Solid Films. 343–344, 152 (1999).
  • K. Zakrzewska. Mixed oxides as gas sensors. Thin Solid Films 391 (2), 229 (2001).
  • M. Toulemonde et al., Track formation and fabrication of nanostructures with MeV-ion beams. Nucl. Instrum. Methods Phys. Res B. 216, 1 (2004).
  • V. Mote, Y. Purushotham, and B. Dole. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6 (1), 6 (2012).
  • M. K. Jaiswal et al., Studies of dense electronic excitation-induced modification in crystalline Fe-doped SnO2thin films. Appl. Surf. Sci. 332, 726 (2015).
  • A. F. Shojaei, A. Shams-Nateri, and M. Ghomashpasand. Comparative study of photocatalytic activities of magnetically separable WO3/TiO2/Fe3O4 nanocomposites and TiO2, WO3/TiO2 and TiO2/Fe3O4 under visible light irradiation. Superlattices and Microstructures. 88, 211 (2015).
  • R. Kumar et al., Radiation induced nano-scale free volume modifications in amorphous polymeric material: a study using positron annihilation lifetime spectroscopy. J. Radioanal. Nucl. Chem. 314 (3), 1659 (2017).
  • S. K. Gupta et al., Modifications in physico-chemical properties of 100 MeV oxygen ions irradiated polyimide Kapton-H polymer. Nucl. Instrum. Methods Phys. Res B. 406, 188 (2017).
  • R. Gupta et al., Gamma ray induced modifications in copper microwires synthesized using track-etched membrane. Vacuum. 148, 239 (2018).
  • M. K. Jaiswal, D. Kanjilal, and R. Kumar. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide. Nucl. Instrum. Methods Phys. Res, Sect. B. 314, 170 (2013).
  • E. Bringa, R. Johnson. Coulomb explosion and thermal spikes. Phys. Rev. Lett. 88 (16), 165501 (2002).
  • H. Thakur et al., Orbital anisotropy in SnO2 thin films and its modification by swift heavy ion irradiation. Chem. Phys. Lett. 511 (4–6), 322 (2011).
  • D. Mohanta, N. Mishra, and A. Choudhury. SHI-induced grain growth and grain fragmentation effects in polymer-embedded CdS quantum dot systems. Mater. Lett. 58 (29), 3694 (2004).
  • Y. S. Chaudhary et al., A study on 170 MeV Au13+ irradiation induced modifications in structural and photoelectrochemical behavior of nanostructured CuO thin films. Nucl. Instrum. Methods Phys. Res, Sect. B. 225 (3), 291 (2004).
  • S. Chowdhury et al., Effect of 160MeV Ni12+ ion irradiation on PbS quantum dots. J Luminesci. 114 (2), 95 (2005).
  • R. Kumar, a U. De, and R. Prasad. Physical and chemical response of 70MeV carbon ion irradiated polyether sulphone polymer. Nucl. Instrum. Methods Phys. Res, Sect. B. 248 (2), 279 (2006).
  • R. K. Dhillo, S. Singh, and R. Kumar. 150 MeV Nickel ion beam irradiation effects on polytetrafluor-oethylene (PTFE) polymer. Nucl. Instrum. Methods Phys. Res, Sect. B. 268 (11–12), 2189 (2010).
  • R. Kumar et al., Swift heavy ion induced modification in makrofol-KG polycarbonate. Ind. J. Pure Appl. Phys. 48, 166 (2010).
  • R. K. Pandey et al., Heavy-ions induced sputtering in BaF2 thin films. Nucl. Instrum. Methods Phys. Res, Sect. B. 314, 21 (2013).
  • S. K. Gautam et al., Electronic structure modification and Fermi level shifting in niobium-doped anatase titanium dioxide thin films: a comparative study of NEXAFS. work function and stiffening of phonons. Phys. Chem. Chem. Phys. 18 (5), 3618 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.