87
Views
0
CrossRef citations to date
0
Altmetric
Articles

Giant dielectric constants in K0.8M0.4Ti1.6O4 (M = Ni, Zn) lepidocrocite-type layered titanate ceramics

&
Pages 100-108 | Received 31 Oct 2017, Accepted 22 Jun 2018, Published online: 07 May 2019

References

  • M. M. Vijatović, J. D. Bobić, and B. D. Stojanović, History and challenges of barium titanate: part I, Science Sinter. 40, 155 (2008).
  • M. A. Subramanian et al., High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem. 151(2), 323 (2000). DOI: 10.1006/jssc.2000.8703.
  • A. P. Ramirez et al., Giant dielectric constant response in a copper-titanate, Solid State Commun. 115(5), 217 (2000). DOI: 10.1016/S0038-1098(00)00182-4.
  • J. R. Esquivel-Elizondo, B. B. Hinojosa, and J. C. Nino, Bi2Ti2O7: it is not what you have read, Chem. Mater. 23(22), 4965 (2011). DOI: 10.1021/cm202154c.
  • D. Maurya, and J. Kumar, S. Shripal, Dielectric-spectroscopic and ac conductivity investigations on copper doped layered Na1.7K0.3Ti3O7 ceramics, J. Appl. Phys. 100, 034103 (2006).
  • S. V. Vikram, D. Maurya, and V. S. Chandel, Effect of Na-substitution on the dielectric behavior of layered K2-xNaxTi4O9 (0.05 ≤ x ≤ 0.15) ceramics, J. Alloys Cpd. 478, 389 (2009).
  • S. V. Vikram, D. M. Phase, and V. S. Chandel, Synthesis, characterization, and electrical studies on Cu-doped K2Ti6O13 lead-free ceramics: role of defect associate dipoles, J. Alloys Compd. 489(2), 700 (2010). DOI: 10.1016/j.jallcom.2009.09.157.
  • R. Federicci et al., Rb2Ti2O5: superionic conductor with colossal dielectric constant, Phys. Rev. Mater. 1, 032001 (2017).
  • T. Sasaki et al., Preparation and acid-base properties of a protonated titanate with the lepidocrocite-like layer structure, Chem. Mater. 7(5), 1001 (1995). DOI: 10.1002/chin.199538021.
  • D. Groult, C. Mercey, and B. Raveau, Nouveaux oxydes à structure en feuillets: les titanates de potassium non-stoechiométriques Kx(MyTi2-y)O4, J. Solid State Chem. 32(3), 289 (1980). DOI: 10.1016/S0022-4596(80)80022-3.
  • A. F. Reid, W. G. Mumme, and A. D. Wadsley, A new class of compound Mx+Ax3+Ti2-xO4 (0.60 < x < 0.80) typified by RbxMnxTi2-xO4, Acta Cryst. B24, 1228 (1968).
  • M. Osada et al., Controlled doping of semiconducting titania nanosheets for tailored spinelectronic materials, Nanoscale. 6(23), 14227 (2014). DOI: 10.1039/C4NR04465G.
  • T. Gao, H. Fjellvåg, and P. Norby, Defect chemistry of a zinc-doped lepidocrocite titanate CsxTi2-x/2Znx/2O4 (x = 0.7) and its protonic form, Chem. Mater. 21(15), 3503 (2009). DOI: 10.1021/cm901329g.
  • W. A. England, J. E. Birkett, J. B. Goodenough, and P. J. Wiseman, Ion exchange in the Csx[Ti2-x/2Mgx/2]O4 structure, J. Solid State Chem. 49(3), 300 (1983).
  • Y. Ide, M. Sadakane, T. Sano, and M. Ogawa, Functionalization of layered titanates, J. Nanosci. Nanotechnol. 14(3), 2135 (2014). DOI: 10.1166/jnn.2014.8525.
  • T. Maluangnont, P. Arsa, and T. Sooknoi, Extending the basic function of lattice oxygen in lepidocrocite titanate – the conversion of intercalated fatty acid to liquid hydrocarbon fuels, J. Solid State Chem. 256, 219 (2017). DOI: 10.1016/j.jssc.2017.09.012.
  • I. E. Grey, C. Li, I. C. Madsen, and J. A. Watts, The stability and structure of Csx[Ti2-x/4□x/4]O4, 0.61 < x < 0.65, J. Solid State Chem. 66, 7 (1987). DOI: 10.1016/0022-4596(87)90215-5.
  • P. S. Halasyamani, and K. R. Poeppelmeier, Noncentrosymmetric oxides, Chem. Mater. 10(10), 2753 (1998). DOI: 10.1021/cm980140w.
  • W. Hu et al., Atomic-scale control of TiO6 octahedra through solution chemistry towards giant dielectric response, Sci. Rep. 4, 6582 (2014).
  • W. Hu, L. Li, W. Tong, and G. Li, Water-titanate intercalated nanotubes: fabrication, polarization, and giant dielectric property, Phys. Chem. Chem. Phys. 12(39), 12638 (2010). DOI: 10.1039/c0cp00280a.
  • V. G. Goffman et al., Electrical properties of the potassium polytitanate compacts, J. Alloys Compd. 615, 5526 (2014).
  • V. G. Goffman et al., Data on electrical properties of nickel modified potassium polytitanates compacted powders, Data in Brief. 4, 193 (2015). DOI: 10.1016/j.dib.2015.05.010.
  • T. Maluangnont et al., Beyond soft chemistry – bulk and surface modifications of polycrystalline lepidocrocite titanate induced by post-synthesis thermal treatment, Dalton Trans. 46(41), 14277 (2017). DOI: 10.1039/C7DT03092D.
  • H. Miura, CellCalc: a unit cell parameter refinement program on Windows computer [in Japanese], X-rays. 45, 145 (2003).
  • T. C. Ozawa, and T. Sasaki, Partial alkali-metal ion extraction from K0.8(Li0.27Ti1.73)O4 using PTFE as an extraction agent, Dalton Trans. 43(39), 14902 (2014). DOI: 10.1039/C4DT01869A.
  • T. C. Ozawa, and T. Sasaki, Exploration of mid-temperature alkali-metal-ion extraction route using PTFE (AEP): transformation of α-NaFeO2-type layered oxides into rutile-type binary oxides, Inorg. Chem. 51(13), 7317 (2012). DOI: 10.1021/ic3006986.
  • E. V. Stukova, S. V. Baryshnikov, and E. Y. Koroleva, Dielectric properties of ferroelectric composites (NaNO2)0.95/(PbTiO3)0.05, Ferroelectrics. 501(1), 75 (2016). DOI: 10.1080/00150193.2016.1199219.
  • T. V. Kruzina et al., Thermal treatment and dielectric properties of Na0.5Bi0.5TiO3 single crystal, Ferroelectrics. 462(1), 140 (2014). DOI: 10.1080/00150193.2014.891411.
  • T. Maluangnont et al., Surface and interlayer base-characters in lepidocrocite titanate: the adsorption and intercalation of fatty acid, J. Solid State Chem. 238, 175 (2016). DOI: 10.1016/j.jssc.2016.03.030.
  • T. B. Adams, D. C. Sinclair, and A. R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics, Adv. Mater. 14(18), 1321 (2002). DOI: 10.1002/1521-4095(20020916)14:18<1321::AID-ADMA1321>3.0.CO;2-P.
  • J. Wu, C.-W. Nan, Y. Lin, and Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO, Phys. Rev. Lett. 89(21), 217601 (2002).
  • M. Osada et al., High-κ dielectric nanofilms fabricated from titania nanosheets, Adv. Mater. 18(8), 1023 (2006). DOI: 10.1002/adma.200501224.
  • K. Akatsuka et al., Construction of highly ordered lamellar nanostructures through Langmuir-Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent delectric properties, ACS Nano. 3(5), 1097 (2009). DOI: 10.1021/nn900104u.
  • Y.-H. Kim et al., High-temperature dielectric responses of molecularly-thin titania nanosheet, J. Ceram. Soc. Japan. 123(1437), 335 (2015). DOI: 10.2109/jcersj2.123.335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.